Пусть его скорость была -хкм/ч. первый за 2 часа проехал 16*2=32 км, что бы его догнать нужно 32/(х-16) часов. второй за 1 час проехал 10 км, что бы догнать второго нужно 10/(х-10) часов. разница в гонке между ними известно по условию. состовляем уравнение 32/(х-16)-10/(х-10)=4,5 32х-320-10х+160=4,5(х-10)(х-16) при х≠10 и х≠16 22х-160=4,5(х²-26х+160) 4,5х²-139х+880=0 д=59² х1=(139+59)/9=22 х2=(139-59)/9=8.(8) так как х2< 10 то это не может быть решением, так как он никогда не догнал бы даже второго велосипедиста. получаем ответ при х=22км/ч ответ: 22 км/ч
№1)Найти сумму первых членов геометрической прогрессии если:1)b1=5; g=-1; n=92) b1=2; g=2; n=53)b1=1/8; g=5; n=4 Sn=b1(1-q^n)/(1-q) если q<>1 b1- рервый член q- коэффициент 1. Sn=5(1-(-1)^9)/(1-(-1))=5*2/2=5 2. Sn=2(1-2^5)/(1-2)=2*(-31)/(-1)=62 3. Sn=1/8(1-5^4)/(1-5)=1/8*(-624)/(-4)=39/2 №2) Найти сумму чисел если её слогаемые являются последовательными членами геометрической прогрессии 1/4+1/8+1/16++1/512 b1=1/4 q=1/2 bn=1/512 Sn=(bn*q-b1)/(q-1)=(1/512*1/2-1/4)/(1/2-1)=(-255/1024)/-1/2=255/512
Sn=b1(1-q^n)/(1-q) если q<>1
b1- рервый член
q- коэффициент
1. Sn=5(1-(-1)^9)/(1-(-1))=5*2/2=5
2. Sn=2(1-2^5)/(1-2)=2*(-31)/(-1)=62
3. Sn=1/8(1-5^4)/(1-5)=1/8*(-624)/(-4)=39/2
№2) Найти сумму чисел если её слогаемые являются последовательными членами геометрической прогрессии 1/4+1/8+1/16++1/512
b1=1/4
q=1/2
bn=1/512
Sn=(bn*q-b1)/(q-1)=(1/512*1/2-1/4)/(1/2-1)=(-255/1024)/-1/2=255/512