Пусть второй рабочий в час делает х деталей, тогда первый рабочий в час делает х+3 детали Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов, тогда второй рабочий на производство 150 деталей затрачивает 150/х часов Составим уравнение: 150/х-112/(х+3)=2 150/х-112/(х+3)-2=0 Общий знаменатель х(х+3), тогда (150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение: 150х+450 -112х-2х²-6х=0 32х-2х²+450=0 (умножим на -1) 2х²-32х-450=0 (сократим на 2) х²-16х-225=0 Найдем дискриминант: D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156 х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25 х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит ответ: Второй рабочий в час изготовляет 25 деталей.
Напомним, что любая функция принимает наименьшее или наибольшее значение тогда, когда ее производная равна нулю или не существует. Найдем производную y´(x) и приравняем ее к нулю. y´(x)=(8x2-x3+13)´=(8x2)´- (x3)´ + 13´ = 16x - 3x2 - существует при любых x. 16x-3x2=0 x(16-3x)=0 x1=0, x2=16/3=5 целых 1/3 - в этих точках функция y(x) принимает наименьшее или наибольшее значение. Когда производная меньше нуля, функция убывает. Когда производная больше нуля, функция возрастает. Посмотрим на знаки производной. При x<0 y´(x)<0. При 00. Значит, до x=0 функция y(x) убывает, а после x=0 - возрастает. Поэтому в точке x=0 функция будет принимать наименьшее значение на отрезке [-5; 5]. Найдем это наименьшее значение, подставив в y(x) вместо x ноль. Получаем: y(0) = 8*02 - 03+ 13=13, это и будет ответ.
Первый рабочий затрачивает на производство 112 деталей: 112/(х+3) часов,
тогда второй рабочий на производство 150 деталей затрачивает 150/х часов
Составим уравнение:
150/х-112/(х+3)=2
150/х-112/(х+3)-2=0
Общий знаменатель х(х+3), тогда
(150(х+3)-112х-2*х(х+3))/x(x+3)=0 ОДЗ х не равно 0 ; -3
Раскроим скобки и решим уравнение:
150х+450 -112х-2х²-6х=0
32х-2х²+450=0 (умножим на -1)
2х²-32х-450=0 (сократим на 2)
х²-16х-225=0
Найдем дискриминант:
D=b²-4ac=(-16)²-4*1*(-225)=256+900=1156
х1=(-b+√D)/2*a=(-(-16)+√1156)/2*1=(16+34)/2=25
х2=(-b-√D)/2*a=(-(-16)-√1156)/2*1=(16-34)/2= - 9 < 0 - не подходит
ответ: Второй рабочий в час изготовляет 25 деталей.