В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
kamuxa
kamuxa
14.11.2022 19:43 •  Алгебра

Напишите, , полное решение уравнения 4 * 16^sin^2x - 6 * 4^cos2x = 29 и найдите все корни уравнения, принадлежащие отрезку [3п/2; 3п] с пояснением, если можно)

Показать ответ
Ответ:
Desa11
Desa11
31.08.2020 17:19
Решить  уравнения 4 * 16^sin^2x - 6 * 4^cos2x = 29 
и найти все корни уравнения, принадлежащие отрезку [3π/2; 3π] 

4* (4² ^sin²x) -6*4^cos2x  = 29⇔ 4* 4 ^(2sin²x) -6*4^cos2x  = 29 ⇔
4* 4 ^ (1 -cos2x) -6*4^cos2x  = 29  ⇔4* 4¹*4^( -cos2x) - 6*4^cos2x  = 29 ⇔
4* 4 *  1 / ( 4^cos2x) - 6*4^cos2x  = 29  ;   * * * можно замена :t =4^cos2x * * *
6* (4^ cos2x)² +29* (4^ cos2x)  -16 =0 ;
* * * (4^ cos2x)² +(29/6)* (4^ cos2x)-8/3=0  * * * 
a) 4^cos2x = -16 /3   <  0  не имеет решения  ; 
b) 4^cos2x = 1/2  ⇔2 ^(2cos2x) = 2⁻¹ ⇔2cos2x = -1 ⇔  cos2x  = -1/2 . 
⇔2x  = ±π/3 +2πn ,n ∈Z  ;
x  = ±π/6 +πn ,n ∈Z .
* * * * * * *
Выделяем  все корни уравнения, принадлежащие отрезку [3π/2; 3π] .

3π/2  ≤ - π/6 +πn ≤  3π ⇔ 3π/2+π/6 ≤ πn ≤  3π+π/6 ⇔ 5/3  ≤ n ≤  19/6⇒
n =2 ; 3 .
x₁=  - π/6 +2π =11π/6 ;   x₂ = - π/6 +3π =17π/6 .

3π/2  ≤ π/6 +πn ≤  3π ⇔3π/2 -π/6 ≤ πn ≤  3π -π/6 ⇔4/3 ≤ n ≤  17/6⇒
 n=2
x ₃ =  π/6 +2π=13π /6 .
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота