а) (1,5;2) б) (3;1) в) (-4;27)
Объяснение:
а) y = 2x − 1 и y = 2
2x − 1 = 2
2х = 2 + 1
2х = 3 /2
x = 1,5
y = 2*1,5 - 1 = 3 - 1 = 2
(1,5;2)
б) y = 1/3х и у = 2x − 5
1/3х = 2x − 5
1/3х - 2х = -5 *3
х - 6х = -15
-5x = -15 /(-5)
x = 3
y = 1/3*3 = 1
y = 2*3 - 5 = 1
(3;1)
в) y = −4x + 11 и y = 12x + 75
−4x + 11 = 12x + 75
-4x − 12x = 75 − 11
-16x = 64 /(-16)
x = -4
y = -4*(-4) + 11 = 16 + 11 = 27
y = 12*(-4) + 75 = -48 + 75 = 27
(-4;27)
а) (1,5;2) б) (3;1) в) (-4;27)
Объяснение:
а) y = 2x − 1 и y = 2
2x − 1 = 2
2х = 2 + 1
2х = 3 /2
x = 1,5
y = 2*1,5 - 1 = 3 - 1 = 2
(1,5;2)
б) y = 1/3х и у = 2x − 5
1/3х = 2x − 5
1/3х - 2х = -5 *3
х - 6х = -15
-5x = -15 /(-5)
x = 3
y = 1/3*3 = 1
y = 2*3 - 5 = 1
(3;1)
в) y = −4x + 11 и y = 12x + 75
−4x + 11 = 12x + 75
-4x − 12x = 75 − 11
-16x = 64 /(-16)
x = -4
y = -4*(-4) + 11 = 16 + 11 = 27
y = 12*(-4) + 75 = -48 + 75 = 27
(-4;27)
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек