Решение: Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так: х/у Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение: (х+1)/(у+1)=1/2 Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение: (х-1)/(у-1)=1/3 Решим получившуюся систему уравнений: (х+1)/(у+1)=1/2 (х-1)/(у-1)=1/3 (х+1)=1/2*(у+1) Приведём к общему знаменателю 2 (х-1)=1/3*(у-1) Приведём к общему знаменателю 3 2х+2=у+1 3х-3=у-1
2х-у=1-2 3х-у=-1+3
2х-у=-1 3х-у=2 Вычтем из первого уравнения второе уравнение: 2х-у-3х+у=-1-2 -х=-3 х=-3 : -1 х=3 Подставим значение х=3 в первое уравнение: 2*3 -у=-1 -у=-1-6 -у=-7 у=-7 : -1 у=7 Отсюда: х/у=3/7
- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так:
х/у
Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение:
(х+1)/(у+1)=1/2
Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение:
(х-1)/(у-1)=1/3
Решим получившуюся систему уравнений:
(х+1)/(у+1)=1/2
(х-1)/(у-1)=1/3
(х+1)=1/2*(у+1) Приведём к общему знаменателю 2
(х-1)=1/3*(у-1) Приведём к общему знаменателю 3
2х+2=у+1
3х-3=у-1
2х-у=1-2
3х-у=-1+3
2х-у=-1
3х-у=2
Вычтем из первого уравнения второе уравнение:
2х-у-3х+у=-1-2
-х=-3
х=-3 : -1
х=3
Подставим значение х=3 в первое уравнение:
2*3 -у=-1
-у=-1-6
-у=-7
у=-7 : -1
у=7
Отсюда: х/у=3/7
ответ: Искомая дробь равна 3/7
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)