В окрестности точки x = - 5 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 5 - точка максимума. В окрестности точки x = 1/3 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1/3 - точка минимума.
x ∈ ( - ∞ ; - 5) ∪(1/3; + ∞) возрастает x ∈ ( - 5; 1/3) убывает
Находим время, в течение которого поезда будут следовать друг мимо друга: t=(s₁+s₂)/(v₁+v₂)=(0,35км+0,42км)/(60км/ч+50км/ч)=0,007ч Находим искомое расстояние следующим образом: узнаем какое расстояние проехал поезд за время встречи 0,007ч и отнимем от этого расстояния длину поезда: Для первого поезда: l=v₁t-s₁=60км/ч·0,007ч-0,35км=0,07км=70м Для второго поезда: l=v₂t-s₂=50км/ч·0,007ч-0,42км=-0,07км=-70м Результаты получились противоположными, так как поезда едут в противоположных направлениях. В ответ идет модуль любого значения. ответ: 70 метров
3x^2 + 14x - 5 = 0
D = 196 + 60 = 256
x1 = ( - 14 + 16)/6 = 1/3
x2 = ( - 14 - 16)/6 = - 5
+ - +
( - 5) (1/3) > x
В окрестности точки x = - 5 производная функции меняет знак с (+) на (-). Следовательно, точка x = - 5 - точка максимума.
В окрестности точки x = 1/3 производная функции меняет знак с (-) на (+). Следовательно, точка x = 1/3 - точка минимума.
x ∈ ( - ∞ ; - 5) ∪(1/3; + ∞) возрастает
x ∈ ( - 5; 1/3) убывает
t=(s₁+s₂)/(v₁+v₂)=(0,35км+0,42км)/(60км/ч+50км/ч)=0,007ч
Находим искомое расстояние следующим образом: узнаем какое расстояние проехал поезд за время встречи 0,007ч и отнимем от этого расстояния длину поезда:
Для первого поезда:
l=v₁t-s₁=60км/ч·0,007ч-0,35км=0,07км=70м
Для второго поезда:
l=v₂t-s₂=50км/ч·0,007ч-0,42км=-0,07км=-70м
Результаты получились противоположными, так как поезда едут в противоположных направлениях. В ответ идет модуль любого значения.
ответ: 70 метров