Объяснение:
f(x)=√(x-1) p(2;0) yn=? S=?
ОДЗ: x-1≥1 x≥1
1) yn=f(x₀)+f'(x₀)*(x-x₀) x₀=2 ⇒
f(2)=√(2-1)=√1=1
f'(2)=(√(x-1))'=1/(2*√(x-1))=1/(2*√(2-1))=1/(2*√1)=1/(2*1)=1/2 ⇒
yn=1+(1/2)*(x-2)=1+x/2-1=x/2
yn=x/2.
2) y=√(x-1) y=x/2 x=1 x=2
S=₁∫²((x/2-√(x-1))dx=((x²/4)-(2/3)*√(x-1)³) ₁|²=(2²/4-(2/3)*√1³)-(1²/4-(2/3)*√0³)=
=1-(2/3)-(1/4)+0=1-(11/12)=1/12≈0,0833.
S≈0,0833 кв. ед.
Объяснение:
f(x)=√(x-1) p(2;0) yn=? S=?
ОДЗ: x-1≥1 x≥1
1) yn=f(x₀)+f'(x₀)*(x-x₀) x₀=2 ⇒
f(2)=√(2-1)=√1=1
f'(2)=(√(x-1))'=1/(2*√(x-1))=1/(2*√(2-1))=1/(2*√1)=1/(2*1)=1/2 ⇒
yn=1+(1/2)*(x-2)=1+x/2-1=x/2
yn=x/2.
2) y=√(x-1) y=x/2 x=1 x=2
S=₁∫²((x/2-√(x-1))dx=((x²/4)-(2/3)*√(x-1)³) ₁|²=(2²/4-(2/3)*√1³)-(1²/4-(2/3)*√0³)=
=1-(2/3)-(1/4)+0=1-(11/12)=1/12≈0,0833.
S≈0,0833 кв. ед.