Это задача на производительность труда. http://free.megacampus.ru/xbookM0005/index.html?go=part-027*page.htm здесь формулы. t - время одной девочки, t+3 - время другой, уравнение будет 1/t + 1/(t+3) = 1/2/ решаем, получится квадратное уравнение (tквадрат) -t -6 =0. решаем его, получим корень с положительным значением = 3 часа. Это время одной девочки, у другой будет 6 часов. Проверка. Для первой девочки Всю квартиру она убирает за 3 часа, сколько уберет за 2 часа---пропорция х=1*2 /3 = 2/3 части квартиры. Для второй девочки всю квартиру убирает за 6 часов, за 2 часа уберет 1*2/6 =1/3 часть квартиры. 1/3+2/3 =1 -вся квартира за 2 часа--верно.
http://free.megacampus.ru/xbookM0005/index.html?go=part-027*page.htm
здесь формулы.
t - время одной девочки, t+3 - время другой,
уравнение будет
1/t + 1/(t+3) = 1/2/
решаем, получится квадратное уравнение (tквадрат) -t -6 =0.
решаем его, получим корень с положительным значением = 3 часа.
Это время одной девочки, у другой будет 6 часов.
Проверка. Для первой девочки Всю квартиру она убирает за 3 часа, сколько уберет за 2 часа---пропорция х=1*2 /3 = 2/3 части квартиры.
Для второй девочки всю квартиру убирает за 6 часов, за 2 часа уберет 1*2/6 =1/3 часть квартиры. 1/3+2/3 =1 -вся квартира за 2 часа--верно.
* * * * * * * * * * * * * * * * * * * * *
При каком значении параметра a уравнение имеет ровно 2 различных решения: (x + 4/x)² + (a - 4)(x + 4/x) - 2a²+a +3 =0
ответ: a ∈ ( - 5 ; - 0,5 ) ∪ (3 ; 3,5 ).
Объяснение: Частный случай (для двух неотрицательных чисел) неравенства Коши: (a+b)/2 ≥ √ab . || сред. арифм. ≥ ср. геом. ||
Поэтому: x + 4/x ≥ 4 ,если x >0 или x + 4/x ≤ - 4 ,если x < 0 .
* * * если x < 0: ( (-x) + ( -4/x) ) ≥ √( ( -x)*(-4/x) ) = 2 ⇔ x + 4/x ≤ - 4 * * *
* * * x + 4/x ∉ ( - 4 ; 4 ) * * *
(x + 4/x)² - (4 -a)(x + 4/x) - 2a²+a +3 =0
Это уравнение квадратное относительно x + 4/x ; после замена ( для удобства ) x + 4/x = t , t ∉ ( - 4 ; 4 ) получаем :
t² - (4 - a)t -2a²+a +3 =0 ,
D =(4-a)²-4(-2a²+a +3)=16 -8a +a²+8a²-4a -12 =9a²-12a+4 =(3a -2)² ≥ 0
t₁= (4-a+3a -2)/2 =a+1
t₂ =(4-a -3a +2)/2 =3 -2a.
Если D = 3a -2 = 0 ⇔ a = 2/3 ⇒ t₁ =t₂ = 5/3 ∈ ( - 4; 4 ) → исходное
уравнение не имеет корней .
Исходное уравнение будет имеет ровно 2 различных решения
Система неравенств ( пишу в одной строке, разделены запятой )
а) { a+1 > 4 ; - 4 < 3 -2a < 4 .
⇔ { a > 3 ; - 4 < 2a -3 < 4.⇔ {a > 3 ; - 0,5 < a < 3,5. ⇔
⇒ a ∈ (3 ; 3,5 ).
(3)
( - 0,5)(3,5)
б) { 3 -2a > 4 ; - 4 < a+1 < 4 .
⇔{ 2a - 3 < - 4 ; -4 - 1 < a < 4 -1 .⇔ { a< -0,5 ; -5 < a < 3.
⇒ a ∈ ( -5 ; -0,5 ).
( - 0.5)
( -5)(3)
* * * * * * * * * * * * * * * * * * * * *
в) { a+1 < - 4 ; - 4 < 3 -2a < 4 .
⇔ { a+1 < - 4 ; - 4 < 2a -3 < 4 . ⇔ { a+1 < - 4 ; 1 < 2a+2< 9. ⇒a ∉∅.
{ a+1 < - 4 ; 0,5 < a+1 < 4,5 . ⇒ a ∉∅.
г) { 3 -2a < - 4 ; - 4 < a+1 < 4 .
⇔{ 2a-3 > 4 ; -4 -1 < a < 4 -1 .⇔{ a> 3,5 ; -5 < a < 3 . ⇒a ∉∅