Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
1) 15,6-6x=0 -6x=-15,6 x= -15,6:(-6)=2,6 2) 2,3(4x-3)=6x-8,5 9,2x-6,9=6x-8,5 9,2x-6x=-8,5+6,9 3,2x=1,6 x=1,6:3,2=0,5 3)7-5b+3=6b+4 -5b-6b=4-10 -11b=-6 b=-6:(-11) =6/11 4)Пусть ученик изготовил х деталей, тогда мастер изготовил 6х деталей, вместе они изготовили 7х деталей, что равно42 7х=42 х= 42:7=6.Значит ученик изготовил 6 деталей, а мастер 36. 5)Пусть ширина прямоугольника равна х м, тогда длина равна х+3 м, периметр равен 2(х+х+3)=54 4х+6=54 4х=48 х=12. Ширина равна 12м, а длина 15 м, площадь равна 12*15=180 кв.м
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Что и требовалось доказать.