Объяснение:
1. 5(2×0,6+1)-3=5(1,2+1)-3=5×2,2-3=11-3=8
2.а) 5х^3×(-2х^2)=-10х^5
б) 2а-(6в-а)+(6в-2а) = 2а-6в+а+6в-2а=а
в)(3x - 1)(3x + 1) + - (3x + 1)^2 = 9x^2 + 1 - 9x^2 + 6x + 1 = 6x + 2
г)(2х^3у)^3=8х^9у^3
3. а)2ху-6у^2=2у(х-3у)
б) а^5-4а^3=а^3(а^2-4)
в) а^3-2а^2+18-9а=а^2(а-2)+9(2-а)
4. а) 4(2-4х)=3-6х
8-16х=3-6х
-16х+6х=3-8
-10х=-5
х=-5÷(-10)=0,5
б) (х-1)(х+7)=0
х^2+7х-х-7=0
х^2 +6х-7=0
за теоремой Виета
х1+х2=-6
х1×х2= -7. х1=-7. х2=1
в) 2у^2-18=0
2у^2=18
у^2=9
у=3;у=-3
5. 1 день -х
2 день - х-10
3 день - х-10-5
х+х-10+х-10-5= 50
3х -25=50
3х=75
х= 25
1день 25км
2 день 15км
3день 10км
11.25 м, 1/12 м/с²
Известно, что скорость - производная от пути, поэтому путь - это интеграл от скорости. Пусть s(t) - функция пути. Тогда
.
Пусть u = 1+t, тогда du = dt.
Подставим обратно u=1+t
Также, поскольку
то С=-3/4 (потому что s(0) должно равнятся 0).
По этому
Ну вот! Теперь у нас есть функция пути. По этому чтобы нати путь который преодолела точка за первые 7 секунд, мы просто находим
s(7).
То есть ответ: 11,25 м.
Дальше, чтобы найти ускорение точки при t=7, возьмем производную от v(t) и подставим t=7.
Теперь найдем v'(7)
То есть ответ: 1/12 м/с².
Объяснение:
1. 5(2×0,6+1)-3=5(1,2+1)-3=5×2,2-3=11-3=8
2.а) 5х^3×(-2х^2)=-10х^5
б) 2а-(6в-а)+(6в-2а) = 2а-6в+а+6в-2а=а
в)(3x - 1)(3x + 1) + - (3x + 1)^2 = 9x^2 + 1 - 9x^2 + 6x + 1 = 6x + 2
г)(2х^3у)^3=8х^9у^3
3. а)2ху-6у^2=2у(х-3у)
б) а^5-4а^3=а^3(а^2-4)
в) а^3-2а^2+18-9а=а^2(а-2)+9(2-а)
4. а) 4(2-4х)=3-6х
8-16х=3-6х
-16х+6х=3-8
-10х=-5
х=-5÷(-10)=0,5
б) (х-1)(х+7)=0
х^2+7х-х-7=0
х^2 +6х-7=0
за теоремой Виета
х1+х2=-6
х1×х2= -7. х1=-7. х2=1
в) 2у^2-18=0
2у^2=18
у^2=9
у=3;у=-3
5. 1 день -х
2 день - х-10
3 день - х-10-5
х+х-10+х-10-5= 50
3х -25=50
3х=75
х= 25
1день 25км
2 день 15км
3день 10км
11.25 м, 1/12 м/с²
Объяснение:
Известно, что скорость - производная от пути, поэтому путь - это интеграл от скорости. Пусть s(t) - функция пути. Тогда
.
Пусть u = 1+t, тогда du = dt.
Подставим обратно u=1+t
Также, поскольку
то С=-3/4 (потому что s(0) должно равнятся 0).
По этому
.
Ну вот! Теперь у нас есть функция пути. По этому чтобы нати путь который преодолела точка за первые 7 секунд, мы просто находим
s(7).
То есть ответ: 11,25 м.
Дальше, чтобы найти ускорение точки при t=7, возьмем производную от v(t) и подставим t=7.
Теперь найдем v'(7)
То есть ответ: 1/12 м/с².