(2x^2-3x+1)(2x^2+5x+1)=9x^2посмотрим что (могу и ошибиться,ибо все делаю не так как надо)1.)приравниваем к нулю: (2x^2-3x+1)(2x^2+5x+1)-9x^2=0 2.) раскрываем скобки: 4x^4 +10x^3+2x^2 -6x^3-15x^2-3x+2x^2+5x+1-9x^2=0 4x^4+4x^3-20x^2+2x=-1 3)выносим за скобки 2x: 2x(2x^3+2x^2-10x+1)=-1 2x=-1, x1=-0,5дальше,продолжаем2x^3+2x^2-10x+1=-1,отсюда 2x^3+2x^2-10x=-2,отсюда 2x за скобки снова: 2x(x^2+x-5)=-2, 2x=-2, x2=-1 x^2+x-5=-1,отсюда x^2+x=4, отсюда x за скобки: x(x+1)=4, x3=4, x4=3x1+x2+x3+x4=-0,5+(-1)+4+3=-1,5+7=5,5
x² + 2x - 3 = 0
По теореме Виета:
x₁ = -3
x₂ = 1
f'(x) > 0, x ∈ (-∞; -3) и f'(x) < 0, x ∈ (-3; -1) U (-1; 1) ⇒ x₁ = -3 -- точка локального максимума
f'(x) < 0, x ∈ (-3; -1) U (-1; 1) и f'(x) > 0, x ∈ (1; +∞) ⇒ x₂ = 1 -- точка локального минимума
2.
Непрерывная на отрезке функция может достигать своего наибольшего и наименьшего значений лишь на концах отрезка и в точках экстремума.
x = 6 ∉ [0; 3] ⇒ функция достигает своего наибольшего и наименьшего значений на концах отрезка.
x = 0 -- точка максимума
x = 3 -- точка минимума
Подробнее - на -