Не совсем понятна эта запись, и в чем надо Если запись трактовать как "тройное" уравнение, то оно не имеет решения. Действительно, первое равенство (x-2)^2+8x=(x-2)^2 может выполняться лишь при х=0. Действительно, убирая из левой и правой частей одинаковый член (x-2)^2, получаем: 8х = 0, отсюда х=0. Второе уравнение (x-2)^2=(x-1)(x-1) не может выполняться при любом значении х. Действительно, записав в виде квадратов, получаем: (x-2)^2=(x-1)^2. Показатели степени равны. Значит, основания тоже должны быть равны. Но они не равны при любом значении х: х-2 ≠ х-1
1) 5 подарочных наборов и 5 коробок
как можно разместить?
В первую коробку мы можем положить любой из 5 наборов
во вторую коробку - любой из 4
в третью- любой из 3
в 4ю- любой из 2
и в 5-ю оставшийся набор
всего
2) даны цифры 1,2,3,4,7
нужно составить 4-х значное число- кратное 6
На 6 делятся числа кратные 2 и 3
кратные 2 должны оканчиваться на 2 или 4
кратные трем должны давать в семме цифр числа - число кратное 3
Первый вариант- наше число заканчивается на 2
тогда на оставшиеся 3 места идут 1,3,4,7
но 1+3+4+2 не кратно 3, 1+3+7+2 не кратно 3, 1+4+7+2 не кратно 3 и 3+4+7+2 не кратно 3
Второй вариант- наше число заканчивается на 4
тогда единственная комбинация это число состоящее из цифр 1,3,7, и 4
Количество таких чисел 3*2*1=6
3) Есть 6 маек и 4 наклейки
первую наклейку клеим на любую из 6, вторую на любую из 5, третью- на любую из 4 и последнюю наклейку на любую из 3
тогда всего
Действительно, первое равенство (x-2)^2+8x=(x-2)^2 может выполняться лишь при х=0. Действительно, убирая из левой и правой частей одинаковый член (x-2)^2, получаем: 8х = 0, отсюда х=0.
Второе уравнение (x-2)^2=(x-1)(x-1) не может выполняться при любом значении х. Действительно, записав в виде квадратов, получаем:
(x-2)^2=(x-1)^2. Показатели степени равны. Значит, основания тоже должны быть равны. Но они не равны при любом значении х: х-2 ≠ х-1