1) графически: надо построить графики функций y=|x+3| и y=|x+5|, тогда координата x их точки пересечения будет корнем этого уравнения: 1) y=|x+3| x=-3; y=0 x=0; y=3 x=-4; y=1 x=1; y=4 2) y=|x+5| x=-5; y=0 x=0; y=5 x=-6; y=1 x=1; y=6 графики в приложении: красным цветом - функция y=|x+3|, синим - y=|x+5| эти графики пересекаются в точке (-4;1) откуда следует, что уравнение имеет 1 корень x=-4 2) аналитически:
1)x+3=x+5, x+3>=0; x>=-3 и x+5>=0; x>=-5 0x=-2 x - нет корней 2)-x-3=x+5, x<=-3 и x>=-5 -2x=8 x=-4 - верно 3) x+3=-x-5, x>=-3 и x<=-5 x - нет корней 4) -x-3=-x-5, x<=-3 и x<=-5 0x=-2 x - нет корней в итоге получили 1 корень: x=-4 ответ: x=-4
При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
надо построить графики функций y=|x+3| и y=|x+5|, тогда координата x их точки пересечения будет корнем этого уравнения:
1) y=|x+3|
x=-3; y=0
x=0; y=3
x=-4; y=1
x=1; y=4
2) y=|x+5|
x=-5; y=0
x=0; y=5
x=-6; y=1
x=1; y=6
графики в приложении: красным цветом - функция y=|x+3|, синим - y=|x+5|
эти графики пересекаются в точке (-4;1) откуда следует, что уравнение имеет 1 корень x=-4
2) аналитически:
1)x+3=x+5, x+3>=0; x>=-3 и x+5>=0; x>=-5
0x=-2
x - нет корней
2)-x-3=x+5, x<=-3 и x>=-5
-2x=8
x=-4 - верно
3) x+3=-x-5, x>=-3 и x<=-5
x - нет корней
4) -x-3=-x-5, x<=-3 и x<=-5
0x=-2
x - нет корней
в итоге получили 1 корень: x=-4
ответ: x=-4
При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
а) х² - 6х +8 > 0
Корни 2 и 4
-∞ (2) (4) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-∞;2)∪(5;+∞)
б) х² + 6х +8 < 0
корни -2 и -4
-∞ (-4) (-2) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-4; -2)
в) -х² -2х +15 ≤ 0
корни -5 и 3
-∞ [-5] [3] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; -5]∪ [3; + ∞)
г) -5х² -11х -6 ≥ 0
корни -1 и -1,2
-∞ [-1,2] [-1] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х ∈ [-1,2; -1]
д) 9x² -12x +4 > 0
D = 0 корень один
х = 2/3
-∞ (-2/3) +∞
+ + знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; 2/3)∪ (2/3; +∞)
е) 4х² -12х +9 ≤ 0
D = 0, корень один х = 3/2
-∞ [3/2] +∞
+ + знаки квадратичной функции
∅