В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
slv13
slv13
14.09.2020 11:47 •  Алгебра

Натуральные числа a и b таковы, что (a,b)=1. Какое наибольшее значение может принимать (a+100b,100a+b)?

Показать ответ
Ответ:
OlessyaBaeva
OlessyaBaeva
06.01.2021 19:30

101,101 по-моему это так. НО НЕУВЕРЕНА

0,0(0 оценок)
Ответ:
myshkin02
myshkin02
16.01.2024 07:28
Для начала, давайте разберемся в обозначениях. Символ (a, b) обозначает наибольший общий делитель чисел a и b. Если (a, b) = 1, то это означает, что у чисел a и b нет общих делителей, кроме 1.

Теперь перейдем к решению задачи. У нас есть два числа: a и b.

Мы хотим найти наибольшее значение выражения (a + 100b, 100a + b). Для этого давайте рассмотрим это выражение более подробно.

Мы знаем, что (a, b) = 1. Это означает, что a и b не имеют общих делителей, кроме 1.

Теперь давайте посмотрим, как можно привести выражение (a + 100b, 100a + b) к более понятному виду, используя это свойство.

Разложим выражение (a + 100b, 100a + b) следующим образом:

(a + 100b, 100a + b) = (a + 100b, 100a + b - 100(a + 100b))

Мы вычли из второго числа 100 разности (a + 100b), чтобы получить новое выражение в скобках.

Продолжим упрощать выражение:

(a + 100b, 100a + b - 100(a + 100b)) = (a + 100b, 100a + b - 100a - 10000b)

(a + 100b, 100a + b - 100a - 10000b) = (a + 100b, -9999b)

Наша цель - найти наибольшее значение этого выражения. Как можно увидеть, -9999b является натуральным числом, так как b - натуральное число.

Поскольку (a, b) = 1, тогда (a + 100b, -9999b) = 1, если (a + 100b) и (-9999b) не имеют общих делителей, кроме 1.

Теперь давайте рассмотрим, когда (a + 100b) и (-9999b) не имеют общих делителей, кроме 1.

Разложим -9999b на множители: -1 * 9999 * b. То есть, -9999b = -1 * 9999 * b.

Теперь рассмотрим два случая:

1. Если а не делится на 9999, то (a + 100b) и (-9999b) не имеют общих делителей, кроме 1. В этом случае наибольшее значение выражения (a + 100b, -9999b) равно 1.

2. Если а делится на 9999, то (a + 100b) и (-9999b) имеют общий делитель - 9999. В этом случае наибольшее значение выражения (a + 100b, -9999b) равно 9999.

Таким образом, наибольшее значение выражения (a + 100b, 100a + b) может быть равным либо 1, либо 9999, в зависимости от того, делится ли число а на 9999 или нет.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота