Так как равенство (1) верно при любых значениях a и b, то оно является тождеством. Это тождество называется формулой куба суммы. Если в эту формулу вместо a и b подставить какие-нибудь выражения, например 5y 3 и 2z , то опять получится тождество.
(5y 3+2z) 3 = 125y 9+150y 6z +60y 3z 2+8z 3 . (2)
Поэтому формула куба суммы читается так:
куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения и второго, плюс утроенное произведение первого выражения на квадрат второго, плюс куб второго выражения.
При любых значениях a и b верно равенство
(a−b) 3 = a 3−3a 2b+3ab 2−b 3 . (3)
Доказательство.
(a−b) 3 = (a−b)(a 2−2ab+b 2) =
= a 3−2a 2b+ab 2 − a 2b+2ab 2−b 3 =
= a 3−3a 2b+3ab 2−b 3
Так как равенство (3) верно при любых значениях a и b, то оно является тождеством. Это тождество называется формулой куба разности. Если в эту формулу вместо a и b подставить какие-нибудь выражения, например 5y 3 и 2z , то опять получится тождество.
(5y 3−2z) 3 = 125y 9−150y 6z +60y 3z 2−8z 3 . (4)
Поэтому формула куба разности читается так:
куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения и второго, плюс утроенное произведение первого выражения и квадрата второго, минус куб второго выражения.
1) Область определения - (-оо; +оо)
2) Ни четная, ни нечетная, не периодическая.
3) y(0) = -1; y = 0 в трех иррациональных точках
x1 ~ -1,755; x2 ~ -0,085; x3 ~ 3,34
4) Асимптот нет
5) y ' = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x - 2)(x + 1) = 0
x1 = -1; y(-1) = -2 - 3 + 12 - 1 = 6 - максимум
x2 = 2; y(2) = 2*8 - 3*4 - 12*2 - 1 = 16 - 12 - 24 - 1 = -21 - минимум
При x = (-oo; -1) U (2; +oo) - возрастает
При x = (-1; 2) - убывает
6) y '' = 12x - 6 = 6(2x - 1) = 0
x = 1/2; y(1/2) = 2/8 - 3/4 - 12/2 - 1 = -1/2 - 6 - 1 = - 7,5 - точка перегиба
При x < 1/2 будет y '' < 0; график выпуклый вверх.
При x > 1/2 будет y '' > 0, график выпуклый вниз.
7) График
(a+b) 3 = a 3+3a 2b+3ab 2+b 3 . (1)
Доказательство.
(a+b) 3 = (a+b)(a 2+2ab+b 2) =
= a 3+2a 2b+ab 2 + a 2b+2ab 2+b 3 =
= a 3+3a 2b+3ab 2+b 3
Так как равенство (1) верно при любых значениях a и b,
то оно является тождеством. Это тождество называется
формулой куба суммы. Если в эту формулу вместо a и b
подставить какие-нибудь выражения, например 5y 3 и 2z ,
то опять получится тождество.
(5y 3+2z) 3 = 125y 9+150y 6z +60y 3z 2+8z 3 . (2)
Поэтому формула куба суммы читается так:
куб суммы двух выражений равен кубу первого выражения
плюс утроенное произведение квадрата первого выражения и второго,
плюс утроенное произведение первого выражения на квадрат второго,
плюс куб второго выражения.
При любых значениях a и b верно равенство
(a−b) 3 = a 3−3a 2b+3ab 2−b 3 . (3)
Доказательство.
(a−b) 3 = (a−b)(a 2−2ab+b 2) =
= a 3−2a 2b+ab 2 − a 2b+2ab 2−b 3 =
= a 3−3a 2b+3ab 2−b 3
Так как равенство (3) верно при любых значениях a и b,
то оно является тождеством. Это тождество называется
формулой куба разности. Если в эту формулу вместо a и b
подставить какие-нибудь выражения, например 5y 3 и 2z ,
то опять получится тождество.
(5y 3−2z) 3 = 125y 9−150y 6z +60y 3z 2−8z 3 . (4)
Поэтому формула куба разности читается так:
куб разности двух выражений равен кубу первого выражения
минус утроенное произведение квадрата первого выражения и второго,
плюс утроенное произведение первого выражения и квадрата второго,
минус куб второго выражения.