1.log₂ (x²-2x+8)=4 ОДЗ: x²-2x+8>0 f(x)=x²-2x+8 - парабола, ветви вверх x²-2x+8=0 D=4-32=-28<0 Парабола не пересекает ось ОХ. Парабола лежит выше оси ОХ. х∈(-∞; +∞)
Пусть b1,b2,b3 члены геометрической прогрессии и a1,a4,a25 соответственно арифметической, из условия следует что b1+b2+b3=114. Из свойств арифм прогрессии, приравнивая соответствующие члены перепишем их как b1=a1, b2=a1+3d, b3=a1+24d суммируя получаем b1+b2+b3=3a1+27d=114 откуда a1+9d=38, выразим отсюда a1=38-9d так как b2/b1=b3/b2 или что тоже самое (a1+3d)/a1=(a1+24d)/(a1+3d) подставляя в уравнение, выражение a1=38-9d получаем (38-6d)/(38-9d)=(38+15d)/(38-6d) или (38-6d)(38-6d)=(38+15d)(38-9d) 18*38*d=171d^2 откуда d=0,d=4 при d=0 ответ b1=b2=b3=38 , при d=4, a1=2 получаем b1=a1=2, b2=a4=14, b3=a25=98.
ОДЗ: x²-2x+8>0
f(x)=x²-2x+8 - парабола, ветви вверх
x²-2x+8=0
D=4-32=-28<0
Парабола не пересекает ось ОХ.
Парабола лежит выше оси ОХ.
х∈(-∞; +∞)
x²-2x+8=2⁴
x²-2x+8-16=0
x²-2x-8=0
D=4+32=36
x₁=2-6 = -2
2
x₂=2+6 =4
2
ответ: -2; 4
2. log(x) 16 - log(x) 2=0.5
log(x) (16/2) = 0.5
8=x⁰·⁵
x=8²
x=64
ответ: 64
3. log₃ log₄ log²₃ (x-3)=0
ОДЗ: х-3>0
x>3
log₄ log²₃ (x-3)=3⁰
log₄ log₃² (x-3)=1
log²₃ (x-3)=4¹
log²₃ (x-3)=4
Пусть log₃ (x-3)=y
y² =4
y₁=2
y₂= -2
При у=2
log₃ (x-3)=2
x-3=3²
x-3=9
x=9+3
x=12 >3
При у= -2
log₃ (x-3)= -2
x-3 =3⁻²
x-3 = 1/9
x=1/9 +3
x=3 ¹/₉ >3
ответ: 3 ¹/₉; 12.