В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Radon86
Radon86
15.12.2021 13:14 •  Алгебра

Найди: 1+2+22+...+2151+2+22+...+27 .

ответ:
1. в решении задачи используется формула (выбери один ответ):
суммы конечной геометрической прогрессии
рекуррентная формула n-ого члена прогрессии
суммы конечной арифметической прогрессии

2. Отметь выражение, полученное при вычислении значения дроби:
27+1
27−1
28+1

3. Запиши результат:
1+2+22+...+2151+2+22+...+27 =

Показать ответ
Ответ:
Enotiha217
Enotiha217
15.01.2020 20:02
-7, -5, -3... Найти S50 = ?
a1 = -7, a2 = -5 (a1 и a2 - члены арифметической прогрессии)
Формулы, которые нам понадобятся:
1. S _{50} = \frac{a_{1} + a_{n}}{2} * n - сумма арифметической пр.
2. a_{n} = a_{1} + (n - 1) * d - формула n-ого члена
3. d = a_{2} - a_{1} - разность

Начнём с конца (т.е. с (3))

d = -5 - (-7) = -5 + 7 = 2

Т.к. у нас надо найти сумму ПЯТИДЕСЯТИ членов прогрессии, то n=50
По формуле (2) высчитываем an

an = a1 + (n-1) * d = -7 + (49 * 2) = -7 + 98 = 91

Теперь можно смело находить сумму 50 первых членов арифметической прогрессии (формула (1))

S50 = a1 + an * n / 2 = -7 + 91 * 50 / 2 = 84 * 25 = 2100 (сократили 50 и 2, поэтому на 25)

ответ: S _{50} = 2100
0,0(0 оценок)
Ответ:
666656
666656
29.05.2020 20:36

Имеем:f(x)=2x^4-x+1;           f'(x)=(2x^4-x+1)'=8x^3-1

Из уравнения f'(x)=0, или  8x^3-1=0, находим стационарные точки функции f(x):

8x^3=1

x^3=1/8

x=1/2=0.5

В данном случае одна стационарная точка.

В интервал [-1, 1] попадает  эта точка 1/2. В ней функция принимает значение f(1/2)=f(0.5)=2*(0.5)^4-0.5+1=5/8=0.625.

В крайних точках интервала [-1,1] имеем: f(-1) = 2*(-1)^4-(-1)+1=4;  f(1)=2*1^4-1+1=2.

 Из трех значений f(1/2)=f(0.5)=0.625,  f(-1) =4,   f(1) =2 наименьшим является 0.625, а наибольшим 4.

Поэтому минимальное значение функции f(x)=2x^4-x+1в интервале [-1,1] равно   0.625, максимальное 4.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота