Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
(Аппарат элементарных преобразований графиков функций)
График функции можно получить из графика функции , то есть:
1. График смещаем на 1 вправо.
2. Отражаем его зеркально по оси значений (a.k.a. ординат).
3. Растягиваем его по оси значений в два раза.
Получаем фигуру 1.
Найдите точки пересечения графика этой функции с осями координат.
y=-2x+2
Сначала x=0, потом y=0.
От x=0 имеем y=2.
От y=0 имеем -2x+2=0 => x=1. Точка x=1,y=0.
Найдите значение функции, если значение аргумента равно -1.
При каком значении х функция принимает значение, равное 8?
-2x+2 = 8
-2x=6
x=-3
Принадлежит ли графику функции точка А(10;-18)?
Щас проверим. . Да. Принадлежит.
Найдите точку пересечения графика данной функции и функции y=4.
-2x+2 = 4
-x+1=2
-x=1
x=-1
Точка x=-1,y=4.
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1