Вот почитайте надеюсь Уравнением с одной переменной, называется равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Найти все корни уравнения или доказать, что их нет – это значитрешить уравнение.
Свойство 1. При переносе слагаемого из одной части уравнения в другую с противоположным знаком, получается уравнение с теми же корнями. x – 3 = 6 ⇒ x = 6 + 3 ⇒ x = 9 .
Свойство 2. При умножении или делении обеих частей уравнения на одно и то же число, отличное от нуля, мы получим уравнение с теми же корнями (решениями).
3x = 6 ⇒ 3x : 3 = 6 : 3 ⇒ x = 2 .
Уравнение вида ax = b называется линейным. Например:
1. 3x = 9 ( ax = b ) .
2. 3x – 3 = 9 ; 3x = 9 + 3 ; 3x = 12 ( ax = b ) .
Принято: цифры в алгебраических выражениях заменять первыми буквами латинского алфавита — a, b, c, …, а переменные обозначать последними — x, y, z.
a ≠ 0 b — любое значение ax = b имеет один корень x = b : a . a = 0 b ≠ 0 ax = b не имеет корней . a = 0 b = 0 ax = b имеет бесконечно много корней .
3x = 3 один корень x = 3 : 3 x = 1 . 0 • x = 5 корней нет . 0 • x = 0 бесконечно много корней x — любое число .
!x+2! - !x-3! + !2x+6! =4
Очередной раз напомню. Модуль это всегда положительное число, расстояние от числа до начала координат. и раскрываются они если положительное число, то такое же число, если отрицательное то с минусом
Раскрываем модули
!2x+6! !x+2! !x-3!
x<-3 -(2x+6) -(x+2) -(x-3) 1
-3<x<-2 2x+6 -(x+2) -(x-3) 2
-2<x<3 2x+6 x+2 -(x-3) 3
x>3 2x+6 x+2 (x+3) 4
!x+2! - !x-3! + !2x+6! =4
1. -(x+2) - (-(x-3)) + (-(2x+6)) =4
-x-2+x-3-2x-6=4
-2x=15
x=-15/2 x<-3 подходит
2. -(x+2) - (-(x-3)) + (2x+6) =4
-x-2+x-3+2x+6=4
2x=3
x=3/2 -3<x<-2 нет решений
3. (x+2) - (-(x-3)) + (2x+6) =4
x+2 +x-3 + 2x+6=4
4x=-1
x=-1/4 -2<x<3 подходит
4. (x+2) - (x-3) + (2x+6) =4
x+2-x+3+2x+6=4
2x=-7
x=-7/2 x>3 нет корней
Уравнением с одной переменной, называется равенство, содержащее только одну переменную.
Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Найти все корни уравнения или доказать, что их нет – это значитрешить уравнение.
Свойство 1. При переносе слагаемого из одной части уравнения в другую с противоположным знаком, получается уравнение с теми же корнями.
x – 3 = 6 ⇒ x = 6 + 3 ⇒ x = 9 .
Свойство 2. При умножении или делении обеих частей уравнения на одно и то же число, отличное от нуля, мы получим уравнение с теми же корнями (решениями).
3x = 6 ⇒ 3x : 3 = 6 : 3 ⇒ x = 2 .
Уравнение вида ax = b называется линейным. Например:
1. 3x = 9 ( ax = b ) .
2. 3x – 3 = 9 ;
3x = 9 + 3 ;
3x = 12 ( ax = b ) .
Принято: цифры в алгебраических выражениях заменять
первыми буквами латинского алфавита — a, b, c, …,
а переменные обозначать последними — x, y, z.
a ≠ 0 b — любое значение ax = b имеет один корень x = b : a .
a = 0 b ≠ 0 ax = b не имеет корней .
a = 0 b = 0 ax = b имеет бесконечно много корней .
3x = 3 один корень x = 3 : 3 x = 1 .
0 • x = 5 корней нет .
0 • x = 0 бесконечно много корней x — любое число .