Найди для каждой тригонометрической функции наименьший положительный период и определи четность sin a п, нечетная COS a 2п, четная tg a 2п, нечетная п, нечетная ctg a
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Пусть токарь по плану должен был работать х дней и за это время он должен был изготовить по плану 19*х деталей.
Работая на новом станке, токарь фактически проработал (х-3) дня, изготавливая в день 19+7=26 деталей. За это время токарь фактически сделал 26(х-3) деталей, что оказалось на 20 деталей больше, чем было запланировано.
Составим уравнение:
26(х-3)-19х = 20
26х-78-19х = 20
7х = 98
х = 14 (дней) - должен был работать токарь
26(14-3)=26*11 = 286 (шт,) - деталей изготовил токарь фактически
А теперь
Краткая запись задания
Дней Деталей/день Деталей
По плану х 19 19х
Фактически х-3 26 26(х-3)
Составим уравнение:
26(х-3)-19х = 20
26х-78-19х = 20
7х = 98
х = 14 (дней) - должен был работать токарь
26(14-3)=26*11 = 286 (шт,) - деталей изготовил токарь фактически
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
286 шт. деталей
Объяснение:
Пусть токарь по плану должен был работать х дней и за это время он должен был изготовить по плану 19*х деталей.
Работая на новом станке, токарь фактически проработал (х-3) дня, изготавливая в день 19+7=26 деталей. За это время токарь фактически сделал 26(х-3) деталей, что оказалось на 20 деталей больше, чем было запланировано.
Составим уравнение:
26(х-3)-19х = 20
26х-78-19х = 20
7х = 98
х = 14 (дней) - должен был работать токарь
26(14-3)=26*11 = 286 (шт,) - деталей изготовил токарь фактически
А теперь
Краткая запись задания
Дней Деталей/день Деталей
По плану х 19 19х
Фактически х-3 26 26(х-3)
Составим уравнение:
26(х-3)-19х = 20
26х-78-19х = 20
7х = 98
х = 14 (дней) - должен был работать токарь
26(14-3)=26*11 = 286 (шт,) - деталей изготовил токарь фактически