В решении.
Объяснение:
1. (0,4m + n⁴)(0,16m² - 0,4mn⁴ + n⁸) =
= 0,064m³ - 0,16m²n⁴ + 0,4mn⁸ + 0,16m²n⁴ - 0,4mn⁸ + n¹² =
= 0,064m³ + n¹².
2. 68,4² − 68,3² = разность квадратов, разложить по формуле:
= (68,4 - 68,3)*(68,4 + 68,3) =
= 0,1 * 136,7 = 13,67.
3. Разложи на множители:
36t² + 84t + 49 = (6t + 7)² = (6t + 7)*(6t + 7).
Выбери все возможные варианты:
(6t+7)⋅(6t+7)
(6t−7)⋅(6t−7)
(6t−7)2
(6t+7)⋅(6t−7)
4. Представь квадрат двучлена в виде многочлена:
(18x⁴ − 34)² = квадрат разности, разложить по формуле:
= 324х⁸ - 1224х⁴ + 1156.
В решении.
Объяснение:
1. (0,4m + n⁴)(0,16m² - 0,4mn⁴ + n⁸) =
= 0,064m³ - 0,16m²n⁴ + 0,4mn⁸ + 0,16m²n⁴ - 0,4mn⁸ + n¹² =
= 0,064m³ + n¹².
2. 68,4² − 68,3² = разность квадратов, разложить по формуле:
= (68,4 - 68,3)*(68,4 + 68,3) =
= 0,1 * 136,7 = 13,67.
3. Разложи на множители:
36t² + 84t + 49 = (6t + 7)² = (6t + 7)*(6t + 7).
Выбери все возможные варианты:
(6t+7)⋅(6t+7)
(6t−7)⋅(6t−7)
(6t−7)2
(6t+7)⋅(6t−7)
4. Представь квадрат двучлена в виде многочлена:
(18x⁴ − 34)² = квадрат разности, разложить по формуле:
= 324х⁸ - 1224х⁴ + 1156.
2sin(x/4+π/3) =
sin(x/4+π/3) =/2
x/4 + π/3 = +-π/3+ 2πn, n = 0,+-1,+-2,...
x/4= - π/3 +-π/3+ 2πn, n = 0,+-1,+-2,...
x= - 4π/3 +-4π/3+ 8πn, n = 0,+-1,+-2,...
x1= 8πn, n = 0,+-1,+-2,...
x2= -8π/3 + 8πn, n = 0,+-1,+-2,...
2)sin3xcosx - cos3xsinx=-1
преобразуем левую часть
sin(3x-x)+sin(3x+x) sin(x-3x)+sin(x+3x) sin 2x+sin 4x + sin 2x -sin 4x
- = =
2 2 2
2sin2x
= = sin 2x
2
вернемся к уравнению
sin 2x = -1
2x = -π/2+ 2πn, n=0,+-1,+-2, ...
x= - π/4 + πn, n=0,+-1,+-2, ...