Последовательность решения линейных неравенств не намного отличается от решения линейных уравнений. Есть одна важная особенность шагов решения: При делении (умножении) обеих частей неравенства на отрицательное число нужно не забыть поменять знак самого неравенства на противоположный. И ещё одна тонкость встречается в тех случаях, когда Вы получаете неравенства, содержащие множитель 0 перед переменной после упрощения частей неравенства. Неравенство 0·х < 0 не имеет решений, а решением неравенства 0·х > - 8 является любое действительное число. В подобных случаях нужно внимательно оценивать левую и правую части, делать выводы. Привожу примеры решения двух линейных неравенств:
Решение: Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет: (а-3)/а Если к числителю прибавим 3, то числитель станет равным: (а-3+3)=а, а к знаменателю прибавим два знаменатель примет значение: (а+2) сама дробь представит в виде: а/(а+2) А так как получившаяся дробь увеличится на 7/40 , составим уравнение: а/(а+2) - (а-3)/а=7/40 Приведём уравнение к общему знаменателю (а+2)*а*40 а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а 40а²- 40*(а²+2а-3а-6)=7*(а²+2а) 40а²-40а²+40а+240=7а²+14а 7а²+14а-40а-240=0 7а²-26а-240=0 а1,2=(26+-D)/2*7 D=√(26²-4*7*-240)=√(676+6720)=√7396=86 а1,2=(26+-86)/14 а1=(26+86)/14=112/14=8 а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи Подставим значение а=8 в дробь (а-3)/а (8-3)/8=5/8
И ещё одна тонкость встречается в тех случаях, когда Вы получаете неравенства, содержащие множитель 0 перед переменной после упрощения частей неравенства.
Неравенство 0·х < 0 не имеет решений, а решением неравенства 0·х > - 8 является любое действительное число.
В подобных случаях нужно внимательно оценивать левую и правую части, делать выводы.
Привожу примеры решения двух линейных неравенств:
Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет:
(а-3)/а
Если к числителю прибавим 3, то числитель станет равным:
(а-3+3)=а,
а к знаменателю прибавим два знаменатель примет значение:
(а+2)
сама дробь представит в виде:
а/(а+2)
А так как получившаяся дробь увеличится на 7/40 , составим уравнение:
а/(а+2) - (а-3)/а=7/40
Приведём уравнение к общему знаменателю (а+2)*а*40
а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а
40а²- 40*(а²+2а-3а-6)=7*(а²+2а)
40а²-40а²+40а+240=7а²+14а
7а²+14а-40а-240=0
7а²-26а-240=0
а1,2=(26+-D)/2*7
D=√(26²-4*7*-240)=√(676+6720)=√7396=86
а1,2=(26+-86)/14
а1=(26+86)/14=112/14=8
а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи
Подставим значение а=8 в дробь (а-3)/а
(8-3)/8=5/8
ответ: 5/8