В задании дана функция у = x² + 4 * x - 5, которая на декартово координатной плоскости Оху представляется как парабола. Как известно, если коэффициент при x² имеет положительное значение (как в нашем случае; он равен 1), то ветви параболы направлены вверх и она имеет вертикальную ось симметрии. Требуется написать уравнение оси симметрии данной параболы. Нетрудно убедиться, что искомое уравнение имеет вид: х = р, где р – абсцисса вершины параболы.
Для того, чтобы выполнить требование задания, приведём формулу (точнее, координаты) вершины, в общем случае, для параболы у = а * x² + b * x + c, которая может быть представлена как (-b / (2 * a); -(b² - 4 * a * c) / (4 * a)). Итак, для нашей параболы абсцисса вершины равна -b / (2 * a) = -4 / (2 * 1) = (-4) / 2 = -2. Следовательно, искомое уравнение имеет вид: х = -2.
В задании дана функция у = x² + 4 * x - 5, которая на декартово координатной плоскости Оху представляется как парабола. Как известно, если коэффициент при x² имеет положительное значение (как в нашем случае; он равен 1), то ветви параболы направлены вверх и она имеет вертикальную ось симметрии. Требуется написать уравнение оси симметрии данной параболы. Нетрудно убедиться, что искомое уравнение имеет вид: х = р, где р – абсцисса вершины параболы.
Для того, чтобы выполнить требование задания, приведём формулу (точнее, координаты) вершины, в общем случае, для параболы у = а * x² + b * x + c, которая может быть представлена как (-b / (2 * a); -(b² - 4 * a * c) / (4 * a)). Итак, для нашей параболы абсцисса вершины равна -b / (2 * a) = -4 / (2 * 1) = (-4) / 2 = -2. Следовательно, искомое уравнение имеет вид: х = -2.
ответ: 0,5.ответ:
Объяснение:
1) a^2 - 10a +25 = ( a - 5 )^2 ( a - 5 )^2=a^2-10a+25
a^2-10a+25=a^2-10a+25
a^2-10a+25-a^2+10a-25=0
0=0
2) 25 - a^2 = ( 5 + a )( a - 5 ) 3) ( b - 1 )( a - 5 ) = - ( 1 - b )( a - 5 )
25-a^2-5a+a^2+25a-5a=0 ( b - 1 )( a - 5 )=(b+1)(a - 5)
15a+25=0 ba-a-5b-ba-a+5b+5=0
15a=-25 2a+5=0
a=-25/-15 2a=-5
a=5/3 a=-5/-2
a=2.5