Для чего мы находим производную функции? Находжение производной, другими словами есть - дифференцирование, смысл которого заключается в том, что оно позволяет нам определить динамику изменнения графика функции, проще говоря - наклон её кривой относительно осей координат. Если посмотреть на график классической параболы, то мы видим, что в точке, где она изгибается и меняет направление относительно оси у, направление ее кривой на бесконечно коротком промежутке (который и есть точка) становится горизнтальным. Как раз этот "горизонтальный" участок мы и ищем, когда приравниваем производную к нулю. Мы находим такой х, при котором график функции меняет направление с убывания на возрастание или наоборот. Затем, подставив, найденное значение х в исходную функцию, мы можем наконец определить координаты такого экстремума (или пика).
(1,5; -13,75)
Объяснение:
Найдем производную функции:
у'= -2х+3
Приравняем к нулю
-2х+3=0
х=1,5 - экстремум
подставляем х=1,5 в исходную функию
у= -1*2,25+4,5-16= -13,75
Координаты вершины: (1,5; -13,75)
Для чего мы находим производную функции? Находжение производной, другими словами есть - дифференцирование, смысл которого заключается в том, что оно позволяет нам определить динамику изменнения графика функции, проще говоря - наклон её кривой относительно осей координат. Если посмотреть на график классической параболы, то мы видим, что в точке, где она изгибается и меняет направление относительно оси у, направление ее кривой на бесконечно коротком промежутке (который и есть точка) становится горизнтальным. Как раз этот "горизонтальный" участок мы и ищем, когда приравниваем производную к нулю. Мы находим такой х, при котором график функции меняет направление с убывания на возрастание или наоборот. Затем, подставив, найденное значение х в исходную функцию, мы можем наконец определить координаты такого экстремума (или пика).
ответ в файле
………………...........