Найди корни уравнения x4−13⋅x2+36=0. Если корней несколько, в ответе укажи их в порядке возрастания через точку с запятой без пробелов (например: -4;1).
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
1. Записать в стандартном виде многочлен : 5х·3у²-2х²у-4ху·7у+0,5ух·5х=15ху²-2х²у-28ху²+2,5х²у=-13ху²+0,5х²у
2. Преобразовать в многочлен стандартного вида : (у³+у²-у)-(у²+у-1)=у³+у²-у-у²-у+1=у³-2у+1
3. Вычислить значение выражения : 3х²-(7ху-4х²)+(5ху-7х²) ,при х=0,3 ; у= -10
3х²-(7ху-4х²)+(5ху-7х²)=3х²-7ху+4х²+5ху-7х²=-2ху -2*0,3*(-10)=6
4.Упростить выражение : (4а²)²-2а³(1+8а)=16а^4-2а³-16a^4=-2а³
5. Упростить выражение : (а+b)(а+2)-(а-b)(а-2)-2аb=а²+2a+ab+2b-а²+2a+ab-2b-2аb=4a
6. Раскрыть скобки используя соответствующее правило : а) 3а²+(а-5)=3а²+а-5 ; б) 5-(4а+5)=5-4а-5=-4a
7. Упростить выражение : а) х-(3х+5)+(2х-4)=х-3х-5+2х-4=-9 ; б) (3а²-4b+5)+(2b-а²-1)=3а²-4b+5+2b-а²-1=2а²-2b+4
8. Решить уравнение : 3х-5+2х-7=-2
5х-12=-2
5x=10
x=2
9. Выполнить умножение: а) -4у(2х-5у+1)=-8xy+20y²-4y; б) 8а²(а-3а³)=8a³-24a^5
10. Упростить выражение : а) 5(х-8)-2(5+х)=5x-40-10-2x=3x-50 ; б) х(х²+х-2)-х²(х-1)=x³+x-2x-x³+x²=2x²-2x
11. Упростить выраж. : у²(у³+у-2)-у(у³+1)+2у²-у³ =y^5+y³-2y²-y^4-y+2y²-y³=y^5-y^4-y
^ - знак степени
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.