Принцип решения таких задач: по таблице тригонометрических функций находить такой угол, при котором верно задание. Можно пользоваться программой Excel, но она даёт значения в радианах, которые потом надо переводить в градусы.
1) sin X = 1/4.
Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (- 1)^k · arcsin(a) + πk, k ∈ Z (целые числа),
x = +-arc sin (1/4) + πk ≈ +- 0,25268 + πk, k ∈ Z. Для справки: величина 0,25268 - это угол в радианах, синус которого равен 1/4. В градусах это 14,47751°.
2) tg X = 2.
Общий вид решения уравнения tg x = a определяется формулой:
x = arctg(a) + πk, k ∈ Z (целые числа).
х = 1,107149 + πk, k ∈ Z. ( 1,107149 радиан = 63,43495°).
На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей - задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например "Симметричную монету бросают дважды..." или "Бросают 3 монеты ...", но принцип решения от этого не меняется, вот увидите.
найти вероятность, что при бросании монеты
Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать "бросают 3 монеты" или "бросают монету 3 раза", результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).
Для задач о подбрасывании монеты существуют два основных метода решения, один - по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй - по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.
Можно пользоваться программой Excel, но она даёт значения в радианах, которые потом надо переводить в градусы.
1) sin X = 1/4.
Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (- 1)^k · arcsin(a) + πk, k ∈ Z (целые числа),
x = +-arc sin (1/4) + πk ≈ +- 0,25268 + πk, k ∈ Z.Для справки: величина 0,25268 - это угол в радианах, синус которого равен 1/4. В градусах это 14,47751°.
2) tg X = 2.
Общий вид решения уравнения tg x = a определяется формулой:
x = arctg(a) + πk, k ∈ Z (целые числа).
х = 1,107149 + πk, k ∈ Z.( 1,107149 радиан = 63,43495°).
На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей - задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например "Симметричную монету бросают дважды..." или "Бросают 3 монеты ...", но принцип решения от этого не меняется, вот увидите.
найти вероятность, что при бросании монеты
Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать "бросают 3 монеты" или "бросают монету 3 раза", результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).
Для задач о подбрасывании монеты существуют два основных метода решения, один - по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй - по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.
Объяснение: