Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
elizavetadeomi
13.07.2020 09:20 •
Алгебра
Найди наибольшее целочисленное решение неравенства s2+2s≤8.
Показать ответ
Ответ:
saskey
15.01.2021 07:33
√x² - 3x + 5 = - x² + 3x + 7
x² - 3x + 5 = ( -x² + 3x + 7)²
x² - 3x + 5 = ( - x² + 3x + 7)( - x² + 3x + 7)
x² - 3x + 5 = x⁴ - 3x³ - 7x² - 3x³ + 9x² + 21x - 7x² + 21x + 49
x² - 3x + 5 = x⁴ - 6x³ - 5x² + 42x + 49
- x⁴ + 6x³ + 6x² - 45x - 44 =0
x⁴ - 6x³ - 6x² + 45x + 44 = 0
Разложим на множители и решим:
(x - 4)( x+ 1)( x² - 3x - 11) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x - 4 = 0
x = 4
x + 1 = 0
x = - 1
x² - 3x - 11 = 0
D= b² - 4ac = 9 - 4×(-11) = 9 + 44 = 53
x = ( 3 + √53)/ 2
x = ( 3 - √53) / 2
0,0
(0 оценок)
Ответ:
380969330270
14.08.2020 22:24
F(x) = cos5x · cos(x + π/6)
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
0,0
(0 оценок)
Популярные вопросы: Алгебра
abeldinova85
14.09.2021 20:38
Решите неравенство: х-4(3-х с подробным объяснением...
masha32434
06.10.2022 05:49
РЕШИТЕ НЕРАВЕНСТВО Номер 2...
00LenaVaganova11
07.04.2023 16:49
Знайдіть корінь рівняння 4x+5=1 A) -1 Б) 2 В) 3 4) Г...
МахаХей
28.02.2023 03:03
сделать это реально сделать это реально...
VeNoM13371
18.01.2022 11:01
Решите неравенство 3(х-1)-(8х-7) ...
боб68
19.05.2022 12:00
Учи.руКакое число дальше?Я никак не пойму((...
vinerplay6
11.07.2021 03:14
4x + 5/6 = 3x - 2/4 + 2x -5/3 решите уравнение...
lenok1067
02.07.2020 12:09
Найдите наибольшее значение выражения -x^2+4x-18...
azatbaykov00
15.08.2020 23:53
Площадь прямоугольника равна 48 см2. одна его сторона составляет 3/4 от другой. найдите меньшую сторону прямоугольника....
prizrak6571
15.08.2020 23:53
Решить ! ) из пунктов а и в навстречу друг другу вышли двое туристов, причем скорость первого – на 1 км/час больше скорости второго. туристы встретились через 3,5 часа....
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
x² - 3x + 5 = ( -x² + 3x + 7)²
x² - 3x + 5 = ( - x² + 3x + 7)( - x² + 3x + 7)
x² - 3x + 5 = x⁴ - 3x³ - 7x² - 3x³ + 9x² + 21x - 7x² + 21x + 49
x² - 3x + 5 = x⁴ - 6x³ - 5x² + 42x + 49
- x⁴ + 6x³ + 6x² - 45x - 44 =0
x⁴ - 6x³ - 6x² + 45x + 44 = 0
Разложим на множители и решим:
(x - 4)( x+ 1)( x² - 3x - 11) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x - 4 = 0
x = 4
x + 1 = 0
x = - 1
x² - 3x - 11 = 0
D= b² - 4ac = 9 - 4×(-11) = 9 + 44 = 53
x = ( 3 + √53)/ 2
x = ( 3 - √53) / 2
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z