Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
а)Выразим из ур-я x+2y=1 х.
х=1-2у
Подставим это значение во второе ур-е
у(1-2у)=-1
у-2у^2=-1
-2y^2+y+1=0
D=1-4*1*(-2)=1+8=9
y1=(-1+3)/-4=2/-4=-0.5
y2=(-1-3)/-4=4/4=1
Теперь подставляем полученные значения у, и находим х.
x1=1-2*(-0.5)=1+1=2
х2=1-2*1=1-2=-1
ответ: 2;-0.5 -1;1
б)х=4+у
(4+у)^2+y(4+y)=6
16+8y+y^2+4y+y^2-6=0
2y^2+12y+10=0
y^2+6y+5=0
D=36-4*5=36-20=16
y1=(-6+4)/2=-2/2=-1
y2=(-6-4)/2=-10/2=-5
x1=4+(-1)=3
x2=4+(-5)=-1
ответ: 3;-1 -1;-5
Скаладываем 2 ур-я. В результате получается:
7x^2=28
x^2=4
x1=2
x2=-2
Выражаем у из 2 ур-я:
y=(2-3x^2)/x
y1=(2-3*2^2)/2=(2-3*4)/2=-10/2=-5
y2=(2-3*(-2)^2)/-2=(2-3*4)/-2=-10/-2=5
ответ:2;-5 -2;5
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.