отметим эти точки на координатной прямой,т.к неравенство нестрогое(≤) то точки будут закрашены и скобки в ответе будет квадратными.
Т.к а>0, то ветви данной параболы будут направлены вверх.
Построим схематически параболу у=x²+4x+3, точки пересечения которой с осью ОХ точки -3 и -1.Та часть параболы,которая находится ниже оси ОХ и будет решением данного неравенства,потому что оно меньше или равно 0.Решением является промежуток [-3;-1]
1)(5^(n-1))^2=5^(2n-2)-Так как при возведении степени в степень показатели степеней умножаются, а основание остается таким же.Пример:(a^(b))^c=a^(b*c).2n-2 Получаем умножая (n-1) на 2
2)5^(3n+7)=5^3n*5^7, Так как возьмем пример а^(b+c)=a^b*a^c
3)Перемножаем значения двух примеров
5^(2n-2)*5^(3n)*5^7.
Выделяем часть 5^(2n-2) и расскрываем скобки.Пример
a^(b-c)=a^b/a^c.В результате подставляя формулу получаем
Здесь мы решили действия со степенями при умножении степеней с одинаковым основанием, показатели степеней складываются, при делении, основание остается таким же, а показатели отнимаются.Приводим выражение.
4)Работаем со знаменателем
5^(5n+3)=5^(5n)*5^3 Принцип не объясняю, так как мы ранее с ним встретились
x∈[-3;-1]
Объяснение:
x²+4x+3≤0
приравняем к 0 и найдем корни кв.уравнения
x²+4x+3= 0 Д=4²-4*1*3=16-12=4 √Д=√4=2
Х1= (-4+2)/2= -2/2= -1 X2= (-4-2)/2= -6/2=-3
отметим эти точки на координатной прямой,т.к неравенство нестрогое(≤) то точки будут закрашены и скобки в ответе будет квадратными.
Т.к а>0, то ветви данной параболы будут направлены вверх.
Построим схематически параболу у=x²+4x+3, точки пересечения которой с осью ОХ точки -3 и -1.Та часть параболы,которая находится ниже оси ОХ и будет решением данного неравенства,потому что оно меньше или равно 0.Решением является промежуток [-3;-1]
1)(5^(n-1))^2=5^(2n-2)-Так как при возведении степени в степень показатели степеней умножаются, а основание остается таким же.Пример:(a^(b))^c=a^(b*c).2n-2 Получаем умножая (n-1) на 2
2)5^(3n+7)=5^3n*5^7, Так как возьмем пример а^(b+c)=a^b*a^c
3)Перемножаем значения двух примеров
5^(2n-2)*5^(3n)*5^7.
Выделяем часть 5^(2n-2) и расскрываем скобки.Пример
a^(b-c)=a^b/a^c.В результате подставляя формулу получаем
5^(2n):5^2*5^(3n)*5^7=5^(2n-2+3n+7)=5^(5n+5)=5^5*5^n
Здесь мы решили действия со степенями при умножении степеней с одинаковым основанием, показатели степеней складываются, при делении, основание остается таким же, а показатели отнимаются.Приводим выражение.
4)Работаем со знаменателем
5^(5n+3)=5^(5n)*5^3 Принцип не объясняю, так как мы ранее с ним встретились
5)Делим числитель на знаменатель 5^5*5^n
----
5^(5n)*5^3
Сокращаем степени
5^(5+5n-(5n+3))=5^(5+5n-5n-3)=5^2=25