1) √3/ 3-x² < 2/ √3-x 2/(√3-x)-√3/(√3-x)(√3+x)>0 (2√3+2x-√3)/(√3-x)(√3+x)>0 (2x+√3)/(√3-x)(√3+x)>0 x=-√3/2 x=√3 x=-√3 + _ + _ (-√3)[-√3/2](√3) x∈(-∞;-√3) U [-√3/2;√3) 2)3/ x²-1 - 1/2 < 3/ 2x-2 3/2(x-1)-3/(x-1)(x+1)+1/2>0 (3x+3-6+x²-1)/2(x-1)(x+1)>0 (x²+3x-4)/2(x-1)(x+1)>0 x²+3x-4=0⇒x1+x2=-3 U x1*x2=-4⇒x1=-4 U x2=1 (x+4)(x-1)/2(x-1)(x+1)>0 (x+4)/2(x+1)>0 x=-4 x=-1 + _ + _ (-4)(-1)(1) x∈(-∞-4) U (-1;1) U (1;∞)
1) √3/ 3-x² < 2/ √3-x
2/(√3-x)-√3/(√3-x)(√3+x)>0
(2√3+2x-√3)/(√3-x)(√3+x)>0
(2x+√3)/(√3-x)(√3+x)>0
x=-√3/2 x=√3 x=-√3
+ _ + _
(-√3)[-√3/2](√3)
x∈(-∞;-√3) U [-√3/2;√3)
2)3/ x²-1 - 1/2 < 3/ 2x-2
3/2(x-1)-3/(x-1)(x+1)+1/2>0
(3x+3-6+x²-1)/2(x-1)(x+1)>0
(x²+3x-4)/2(x-1)(x+1)>0
x²+3x-4=0⇒x1+x2=-3 U x1*x2=-4⇒x1=-4 U x2=1
(x+4)(x-1)/2(x-1)(x+1)>0
(x+4)/2(x+1)>0
x=-4 x=-1
+ _ + _
(-4)(-1)(1)
x∈(-∞-4) U (-1;1) U (1;∞)
4x²+x-3=0
D=1+48=49
x1=(-1-7)/8=-1 U x2=(-1+7)/8=0,75
5x²-9x-2=0
D=81+40=121
x1=(9-11)/10=-0,2 U x2=(9+11)/10=2
+ _ + _ +
[-1](-0,2)[0,75](2)
x∈[-1;-0,2) U [0,75;2)
2)(2+9x-5x²)/ (3x²-2x-1) ≥0
5x²-9x-2=0
D=81+40=121
x1=(9-11)/10=-0,2 U x2=(9+11)/10=2
3x²-2x-1=0
D=4+12=16
x2=(2-4)/6=-1/3 U x2=(2+4)/6=1
_ + _ + _
(-1/3)[-0,1](1)[2]
x∈(-1/3;-0,1] U (1;2]