Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Пусть х кг - масса первого раствора, а у кг- масса второго.По условию задачи масса смеси равна 50 кг.Составляем первое упавнение: х+у=500,25х +0,4у=0,34*50 - второе уравнение. Решаем систему: х+у=50 0,25х +0,4у=0,34*50 х= 50-у 0,25(50-у) +0,4у = 17 12,5 -0,25у +0,4у =17 0,15у = 4,5 у = 30 (кг) - масса второго раствора х = 50-30=20 (кг) - масса первого раствора ответ: 20 кг, 30 кг.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
ответ: 20 кг, 30 кг.