Пусть один из заводов выполняет некоторый заказ за х дней, тогда другой за (х+ 4) дня . Обозначим всю работу за 1 1/х часть работы выполняет первый за день, 1/(х+4) часть работы выполняет другой за день. За 24 дня первый выполнит 24·, за 24 дня второй выполнит 24· При этом объем работы в 5 раз больше. Составим уравнение:
24x+96+24x=5x²+20x 5x²-28x-96=0 D=(-28)²-4·5·(-96)=784+1920=2704=52² x=(28-52)/10=-2,4<0 или х=(28+52)/10=8 ответ. Первый завод выполнит работу за 8 дней, второй за 12 дней
Обозначим всю работу за 1
1/х часть работы выполняет первый за день,
1/(х+4) часть работы выполняет другой за день.
За 24 дня первый выполнит 24·, за 24 дня второй выполнит 24·
При этом объем работы в 5 раз больше.
Составим уравнение:
24x+96+24x=5x²+20x
5x²-28x-96=0
D=(-28)²-4·5·(-96)=784+1920=2704=52²
x=(28-52)/10=-2,4<0 или х=(28+52)/10=8
ответ. Первый завод выполнит работу за 8 дней, второй за 12 дней
Уравнение x^3 + x^2 + x + 2 = 0 имеет один иррациональный корень.
f(-2) = -8 + 4 - 2 + 2 = -4 < 0
f(-1) = -1 + 1 - 1 + 2 = 1 > 0
x0 ∈ (-2; -1)
Можно найти примерно
f(-1,4) = -2,744 + 1,96 - 1,4 + 2 = -0,184 < 0
f(-1,3) = -2,197 + 1,69 - 1,3 + 2 = 0,193 > 0
x0 ∈ (-1,4; -1,3)
Можно уточнить
f(-1,35) = 0,012125 > 0
f(-1,36) = -0,025856 < 0
x0 ∈ (-1,36; -1,35)
f(-1,353) ~ 0,0008
Точность достаточна.
Остальные два корня - комплексные.
Я думаю, что это ошибка в задаче, должно было быть
x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)
б) 4x - 4y + xy - y^2 = 4(x - y) + y(x - y) = (4 + y)(x - y)