а) 9х+2у-4=0 9х+2у-4=0
8х+у-2=0 ⇒ второе умножаем на -2 ⇒ -16х-2у+4=0 складываем
⇒ -7х=0 , х=0, у=2
б) 5u+7v+3=0 -10u+14v+6=0
10u-v+6=0 ⇒ первое уравнение умножаем на -2 ⇒ 10u-v+6=0
⇒складываем ⇒ 13v=-12, v = - 12/13, u= 9/13
a) 4х-3у=8 , 8х-6у=9.
из первого выражаем х=(8+3у)/4, подставляем во второе
(8+3у)*8/4 -6у=9, ⇒решений нет!
б) 0,5х-у=0,5 , х-2у=1;
из первого выражаем у=0,5х-0,5
подставляем во второе
х-х+1=1
у,х∈R
а) 9х+2у-4=0 9х+2у-4=0
8х+у-2=0 ⇒ второе умножаем на -2 ⇒ -16х-2у+4=0 складываем
⇒ -7х=0 , х=0, у=2
б) 5u+7v+3=0 -10u+14v+6=0
10u-v+6=0 ⇒ первое уравнение умножаем на -2 ⇒ 10u-v+6=0
⇒складываем ⇒ 13v=-12, v = - 12/13, u= 9/13
a) 4х-3у=8 , 8х-6у=9.
из первого выражаем х=(8+3у)/4, подставляем во второе
(8+3у)*8/4 -6у=9, ⇒решений нет!
б) 0,5х-у=0,5 , х-2у=1;
из первого выражаем у=0,5х-0,5
подставляем во второе
х-х+1=1
у,х∈R
7^2x-6*7^x-7=0
7^x=t>0
t²-6t-7=0
t1=7 t2=-1<0
7^x=7⇒x=1
2) cos2x+sinx=0
1-2sin²x+sinx=0
2sin²x-sinx-1=0 решаем как квадратное через дискриминант
D=1-4*2*(-1)=9
sinx=(1-3)/4=-1/2 x=(-1)^(n+1)*π/6+πn, n∈Z
sinx=(1+3)/4=1 x=π/2+2πk, k∈Z
3)5sin²x+3sinxcosx+4cos²x=3
5sin²x+3sinxcosx+4cos²x-3(sin²x+cos²x)=0
5sin²x+3sinxcosx+4cos²x-3sin²x-3cos²x=0 однородное, разделим на cos²x
2sin²x+3sinxcosx+cos²x=0 | : cos²x
2tg²x+3tgx+1=0
D=9-4*2*1=1
tgx=(-3-1)/4=-1 x=-π/4+πn, n∈Z
tgx=(-3+1)/4=-1/2 x=-arctg1/2+πk, k∈Z