В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод: многочлен а³+3а²+2а кратен числу 6.
a³+3a²+2a=a(a²+3a+2)=a(a+1)(a+2)
a²+3a+2=(a+1)(a+2)
D=3²-4*1*2=9-8=1
a₁=(-3+1)/2=-2/2=-1
a₂=(-3-1)/2=-4/2=-2
В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод:
многочлен а³+3а²+2а кратен числу 6.
Q1+Q2+Q3=0. ( Q1-количество теплоты, полученное сосудом)
Q1=c1*m1*(t2 - t1). ( c1-удельная теплоемкость алюминия=890Дж/кг*град, m1-его масса=0,045кг, t1-начальная температура =20, t2-конечная температура=30) .
Q2-количество теплоты, полученное водой.
Q2=c2*m2*(t2 - t1) (c2-удельная теплоемкость =4200Дж/кг*град, m2 - масса воды=0,15кг) .
Q3-количество теплоты, отданное нагретым телом.
Q3=c3*m3*(t2 - t3). ( c3-удельная теплоемкость вещества, m3-его масса=0,2кг, t3-его начальная температура =95) .
c1*m1*(t2 - t1) + c2*m2*(t2 - t1) + c3*m3*(t2 - t3)=0.
c3*m3*(t2 - t3)= - c1*m1*(t2 - t1) - c2*m2*(t2 - t1).
с3= - (с1*m1*(t2 - t1) + c2*m2*(t2 - t1)) / m3*(t2 - t3).
c3= - (890*0,045*(30 - 20) + 4200*0,15*(30 - 20)) / 0,2*(30 - 95)=515,4Дж /кг*град
ответ 515,4Дж /кг*град