Объяснение: формула известна: путь = скорость * время;
до встречи автомобили двигались с разной (видимо) скоростью - обозначим (х) км/час для автомобиля из А->В и (у) км/час для автомобиля из В->А, значит разное расстояние - (х*t) км и (у*t) км, одинаковым было время (в пути до встречи), обозначим (t) часов.
x*t + y*t = 80 (км)
оставшуюся часть пути (это у*t) автомобиль из А->В со скоростью (х) за 45 минут = 3/4 часа: y*t = (3/4)*x
t = 3x / (4y)
оставшуюся часть пути (это x*t) автомобиль из со скоростью (y) за 20 минут = 1/3 часа: x*t = (1/3)*y
t = y / (3x)
получим: 3x / (4y) = y / (3x)
9x^2 = 4y^2 ---> 3x = 2y
y = 1.5x (т.е. скорость одного авто в 1.5 раза больше скорости другого)
(y/3) + (3x/4) = 80
4*1.5х + 9x = 80*12
15x = 5*16*4*3
x = 16*4 = 64 (км/час)
у = 1.5*64 = 3*32 = 96 (км/час)
Проверка:
из А->В автомобиль со скоростью 64 км/час за 80/64 часа = 5/4 часа = 1 час 15 минут
из В->А автомобиль со скоростью 96 км/час за 80/96 часа = 5/6 часа = 50 минут
тогда
из А->В автомобиль до встречи за 1 час 15 минут - 45 минут = 30 минут
из В->А автомобиль до встречи за 50 минут - 20 минут = 30 минут
номер Гриши, который начинается на 43 и делится на 3, на 4 и на 5.
1.Т.к. номер Гриши делится на 5, то он оканчивается 5 или 0.
2.Т.к. номер Гриши делится на 4, то это чётное число , и значит, он не может оканчиваться 5, следовательно на конце -0.
3. Число делится на 3, если сумма его цифр делится на 3.
Мы знаем 3 цифры номера 4, 3, 0 . Их сумма 4+3+0=7
7+ 2 ÷ 3
7+ 5 ÷ 3
7+ 8 ÷ 3
Значит, на третьем месте могут стоять 3 цифры 2, 5, 8
4320
4350
4380
4. Проверяем признак делимости на 4. Число делится на 4, если его запись оканчивается двумя цифрами, образующими число, которое делится на 4. Остаётся 2 числа
ответ: 64 и 96 км/час.
Объяснение: формула известна: путь = скорость * время;
до встречи автомобили двигались с разной (видимо) скоростью - обозначим (х) км/час для автомобиля из А->В и (у) км/час для автомобиля из В->А, значит разное расстояние - (х*t) км и (у*t) км, одинаковым было время (в пути до встречи), обозначим (t) часов.
x*t + y*t = 80 (км)
оставшуюся часть пути (это у*t) автомобиль из А->В со скоростью (х) за 45 минут = 3/4 часа: y*t = (3/4)*x
t = 3x / (4y)
оставшуюся часть пути (это x*t) автомобиль из со скоростью (y) за 20 минут = 1/3 часа: x*t = (1/3)*y
t = y / (3x)
получим: 3x / (4y) = y / (3x)
9x^2 = 4y^2 ---> 3x = 2y
y = 1.5x (т.е. скорость одного авто в 1.5 раза больше скорости другого)
(y/3) + (3x/4) = 80
4*1.5х + 9x = 80*12
15x = 5*16*4*3
x = 16*4 = 64 (км/час)
у = 1.5*64 = 3*32 = 96 (км/час)
Проверка:
из А->В автомобиль со скоростью 64 км/час за 80/64 часа = 5/4 часа = 1 час 15 минут
из В->А автомобиль со скоростью 96 км/час за 80/96 часа = 5/6 часа = 50 минут
тогда
из А->В автомобиль до встречи за 1 час 15 минут - 45 минут = 30 минут
из В->А автомобиль до встречи за 50 минут - 20 минут = 30 минут
4320 4380
Объяснение:
номер Гриши, который начинается на 43 и делится на 3, на 4 и на 5.
1.Т.к. номер Гриши делится на 5, то он оканчивается 5 или 0.
2.Т.к. номер Гриши делится на 4, то это чётное число , и значит, он не может оканчиваться 5, следовательно на конце -0.
3. Число делится на 3, если сумма его цифр делится на 3.
Мы знаем 3 цифры номера 4, 3, 0 . Их сумма 4+3+0=7
7+ 2 ÷ 3
7+ 5 ÷ 3
7+ 8 ÷ 3
Значит, на третьем месте могут стоять 3 цифры 2, 5, 8
4320
4350
4380
4. Проверяем признак делимости на 4. Число делится на 4, если его запись оканчивается двумя цифрами, образующими число, которое делится на 4. Остаётся 2 числа
4320 4380