1) Если вторая машина выехала из того же города и едет в ту же сторону, что и первая, то через t времени расстояние между ними будет: S₁ = v₁t' + (v₁-v₂)*t = 80+10t v₁t' - расстояние, которое первая машина до старта второй. 2) Если вторая машина выехала из того же города, но едет в противоположную сторону, то через t времени расстояние между машинами будет: S₂ = v₁t' + (v₁+v₂)*t = 80+150t 3) Если вторая машина выехала из другого города и едет навстречу первой, то через t времени расстояние между машинами будет: S₃ = S₀-v₁t' - (v₁+v₂)*t = S₀ - 80 - 150t 4) Если вторая машина выехала из другого города и едет в сторону, противоположную первой машине, то через t времени расстояние между машинами будет: S₄ = S₀+v₁t' + (v₁+v₂)*t= S₀ + 80 + 150t
f'(x) = 3x² +12x
3x² +12x = 0
x(3x +12) = 0
x = 0 или 3х +12 = 0
х = - 4
б)f(x)=2Sinx-x
f'(x) = 2Cosx -1
2Cosx -1 = 0
Cosx = 1/2
x = +-π/3 + 2πk, k ∈Z
2.Найдите промежутки возрастания и убывания функции:
f(x)=x^3-4x^2+5x-1
f'(x) = 3x² - 8x +5
3x² -8x +5 = 0
x₁ = 5/3, x₂=1
-∞ 1 5/3 +∞
+ - + это знаки 3x² -8x +5
при х ∈(-∞;1)∪(5/3; +∞) функция возрастает
при х ∈(1; 5/3) функция убывает
3.Найдите точки экстремума: f(x)= x^2-3/x-2
f'(x) = (2x(x -2) - x²)/(х-2)² = (2х² - 4х -х²)/(х -2)² = (х² -4х)/(х -2)²
(х² -4х)/(х -2)²= 0, ⇒ (х² -4х) = 0 , х₁ = 0, х₂ = 4
(х -2)²≠ 0, х≠2
-∞ 0 2 4 +∞
+ - - + это знаки (х² -4х)/(х -2)²
х = 0 - это точка максимума; х = 4 - это точка минимума , х = 2 - точка разрыва
4. Докажите что функция g(x) на множестве R является: возрастающей если g(x)=2x^5+4x^3+3x-7
g'(x) = 10x⁴ + 12x² + 3
эта производная при любом х положительна, а это значит, что данная функция возрастающая
S₁ = v₁t' + (v₁-v₂)*t = 80+10t
v₁t' - расстояние, которое первая машина до старта второй.
2) Если вторая машина выехала из того же города, но едет в противоположную сторону, то через t времени расстояние между машинами будет:
S₂ = v₁t' + (v₁+v₂)*t = 80+150t
3) Если вторая машина выехала из другого города и едет навстречу первой, то через t времени расстояние между машинами будет:
S₃ = S₀-v₁t' - (v₁+v₂)*t = S₀ - 80 - 150t
4) Если вторая машина выехала из другого города и едет в сторону, противоположную первой машине, то через t времени расстояние между машинами будет:
S₄ = S₀+v₁t' + (v₁+v₂)*t= S₀ + 80 + 150t