Через точку C проведите прямую, параллельную MN, до пересечения с прямой AB в точке K. Треугольник ACK – равнобедренный.
Решение
Через точку C проведём прямую, параллельную MN, до пересечения с прямой AB в точке K. Поскольку M – середина BC и MN || CK, то отрезок MN – средняя линия треугольника BCK. Поэтому KN = BN, а так как N – середина AD, то AK = BD = AC. Значит, треугольник ACK – равнобедренный.
BAC – внешний угол равнобедренного треугольника ACK, поэтому ∠BNM = ∠BKC = ½ ∠BAC = 20°.
Квадратные уравнения решаются очень легко. Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант:
Если уравнение не имеет решений (вообще имеет, но это в школе не проходят). Если то уравнение имеет 1 решение (корень). Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
3) 20°
Объяснение:
Подсказка
Через точку C проведите прямую, параллельную MN, до пересечения с прямой AB в точке K. Треугольник ACK – равнобедренный.
Решение
Через точку C проведём прямую, параллельную MN, до пересечения с прямой AB в точке K. Поскольку M – середина BC и MN || CK, то отрезок MN – средняя линия треугольника BCK. Поэтому KN = BN, а так как N – середина AD, то AK = BD = AC. Значит, треугольник ACK – равнобедренный.
BAC – внешний угол равнобедренного треугольника ACK, поэтому ∠BNM = ∠BKC = ½ ∠BAC = 20°.
Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант:
Если уравнение не имеет решений (вообще имеет, но это в школе не проходят).
Если то уравнение имеет 1 решение (корень).
Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
Если не понятно.
То вот: