Линейной функцией называется функция вида y=kx+b а) у = 2х и у = 2х – 4 - графики параллельны, поскольку их угловые коэффициенты (k) равны, следовательно, они не пересекаются и не имеют общих точек. б) у = х + 3 и у = 2х – 1 - графики пересекаются, поскольку их угловые коэффициенты различны. Найдем точку пересечения, приравняв правые части: х + 3 = 2х – 1 x=4, y=4+3=7. Координаты точки пересечения - (4;7). в) у = 0,5х + 8 и у =21х + 8 - графики пересекаются, поскольку их угловые коэффициенты различны. Поскольку и в первом, и во втором случае b=8, то точка пересечения графиков - (0,b) - (0;8). г) у = 2х – 2 и у = -0,5х + 3 - графики пересекаются, поскольку их угловые коэффициенты различны. Найдем точку пересечения, приравняв правые части: 2х – 2 = -0,5х + 3 2,5x=5 x=2, y=2*2-2=2. Координаты точки пересечения - (2;2).
Из равенства xy = yx следует, что делители чисел x и y одни и те же, то есть То же самое равенство показывает, что a1y = b1x, ..., any = bnx. Пусть для определённости x < y. Тогда из записанных равенств следует, что a1 < b1, ..., an < bn, то есть y = kx, где k – целое число. Подставляя равенство y = kx в исходное равенство xy = yx, получаем xkx = (kx)x, то есть xk–1 = k. По предположению k > 1, а значит, x > 1. Ясно, что 22–1 = 2. Легко также проверить, что если x > 2 или k > 2, то xk–1 > k.
а) у = 2х и у = 2х – 4 - графики параллельны, поскольку их угловые коэффициенты (k) равны, следовательно, они не пересекаются и не имеют общих точек.
б) у = х + 3 и у = 2х – 1 - графики пересекаются, поскольку их угловые коэффициенты различны.
Найдем точку пересечения, приравняв правые части:
х + 3 = 2х – 1
x=4, y=4+3=7.
Координаты точки пересечения - (4;7).
в) у = 0,5х + 8 и у =21х + 8 - графики пересекаются, поскольку их угловые коэффициенты различны.
Поскольку и в первом, и во втором случае b=8, то точка пересечения графиков - (0,b) - (0;8).
г) у = 2х – 2 и у = -0,5х + 3 - графики пересекаются, поскольку их угловые коэффициенты различны.
Найдем точку пересечения, приравняв правые части:
2х – 2 = -0,5х + 3
2,5x=5
x=2, y=2*2-2=2.
Координаты точки пересечения - (2;2).
Из равенства xy = yx следует, что делители чисел x и y одни и те же, то есть То же самое равенство показывает, что a1y = b1x, ..., any = bnx. Пусть для определённости x < y. Тогда из записанных равенств следует, что a1 < b1, ..., an < bn, то есть y = kx, где k – целое число. Подставляя равенство y = kx в исходное равенство xy = yx, получаем xkx = (kx)x, то есть xk–1 = k. По предположению k > 1, а значит, x > 1. Ясно, что 22–1 = 2. Легко также проверить, что если x > 2 или k > 2, то xk–1 > k.
ответ
{2, 4}.