Решаем методом интервалов (чертим координатную прямую; отмечаем точки -2, 0, 2, выбивая 0, и справа налево рассставляем + и - чередуя на каждом интервале).
Т.к. по условию неравенство должно быть больше или равно 0, то берем те интервалы, где у нас +. Соответсвенно область определения функции: D. [-2;0)U[2;+бесконечно)
Т.к. все выражение находится под корнем, значит оно должно быть больше нуля и зменатель не должен быть равен нулю, т.е.:
(х^3-4х)/х >=0
(>= означает больше или равен 0)
Нули числителя: х(х^2-4)=0, значит х=0, х=2, х=-2.
Нули знаменателя: х=0
Решаем методом интервалов (чертим координатную прямую; отмечаем точки -2, 0, 2, выбивая 0, и справа налево рассставляем + и - чередуя на каждом интервале).
Т.к. по условию неравенство должно быть больше или равно 0, то берем те интервалы, где у нас +.
Соответсвенно область определения функции: D. [-2;0)U[2;+бесконечно)
1) f'(x)=6x^2-6x-12;
f'(x)=0 <=> 6x^2-6x-12=0 |:6
x^2-x-2=0
x1=2 - не входит в промежуток в условии
x2=-1
f(-2)=-16-12+24+24=20
f(1)=2-3+12+24=35
f(-1)=-2-3+12+24=31;
ответ: minf(x)=f(-2)=20; maxf(x)=f(1)=35;
2) f'(x) = -sin2x*2+sinx*2
f'(x)=0 <=> 2sinx-2sin2x=0 |:2
sinx-sin2x=0; sinx-2sinxcosx=0; sinx(1-2cosx)=0; sinx=0 или cosx=-1/2;
x=pi * n, n принадлежит Z или x=+-2pi/3+2pi*k, k принадлежит Z;
f(-pi/3)=cos(-2pi/3) - 2cos(pi/3)=-1/2-2*1/2=-1/2-1=-3/2
f(pi)=cosx(2pi) - 2cos(pi)=1+2=3;
f(2pi/3)=cos(4pi/3)-2(2pi/3)=-1/2+2*1/2=-1/2+1=1/2;
ответ: minf(x)=f(-pi/3)=-3/2; maxf(x)=f(pi)=3;