Приводим дроби к общему знаменателю. Общий знаменатель 2x·(х-3)·(х-3)·(х+3) Первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)² Получим:
Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0. Приравниваем к нулю числитель 6x² - 18x - 2x² -6x-3x²+18x-27=0, x² - 6x - 27 = 0 D=(-6)² - 4·(-27)=36+108 =144 = 12² x₁=(6-12)/2=-3 или х₂=(6+12)/2=9 Так как знаменатель не должен быть равным нулю, то это означает, что х≠0, х≠3, х≠ -3 Поэтому х₁ = - 3 не является корнем уравнения ответ. х=9
Приводим дроби к общему знаменателю.
Общий знаменатель
2x·(х-3)·(х-3)·(х+3)
Первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)²
Получим:
Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0.
Приравниваем к нулю числитель
6x² - 18x - 2x² -6x-3x²+18x-27=0,
x² - 6x - 27 = 0
D=(-6)² - 4·(-27)=36+108 =144 = 12²
x₁=(6-12)/2=-3 или х₂=(6+12)/2=9
Так как знаменатель не должен быть равным нулю, то это означает, что
х≠0, х≠3, х≠ -3
Поэтому х₁ = - 3 не является корнем уравнения
ответ. х=9
т.е представить число
где а=48 или а=96
а числа х и у - простые
Простые числа- это натуральные числа, большее единицы, имеющее ровно два натуральных делителя: 1 и само себя.
НАПРИМЕР: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, и т.д.
Попробуем представить число 48
ближайшие числа к нему, которые образуют квадрат простого числа это 49
7²=49, число 7 простое
Значит 48=49-1=7²-1²
Попробуем представить число 96
ближайшее к нему число, которое будет квадратом простого числа :
11²=121
96= 121-25 = 11²-5²
где 11 и 5 простые числа