Число цифр в каждом числе равно n, то есть общее количество цифр равно: n*10^n, но поскольку ясно, что при такой форме записи чисел количества цифр 0-9 будут одинаковыми, то количество цифр 0-9 равно:
n*10^n/10 = n*10^(n-1)
Иначе говоря, любая из цифр 1-9 будет встречаться ровно n*10^(n-1) раз в числах от 1 до 10^n-1 (при стандартной записи чисел)
Сумма всех 10 цифр равна: 0+1+2+3+...+9 = 9*10/2 = 45
1. Используя обозначения N ; Z ; Q и знаки ∈ ; ∉ , запиши следующее утверждение:
−13 — рациональное число.
ответ : -13∈Q.
(-13 принадлежит множеству рациональных чисел Q).
2. Дан интервал (−8; 8) .
Укажи:
а) числовое множество, содержащееся в этом интервале:
[−6;7]
[8;10]
[−8;6)
б) числовое множество, не содержащееся в этом интервале:
(0;1)
[8;10]
[−6;7]
в) целое число, принадлежащее данному интервалу и отстоящее на одинаковое расстояние от его концов (запиши число): 0. (0 относится к множеству целых чисел Z).
3. Укажи, является ли следующее высказывание истинным:
14/5⋅4/7:2/5∈N.
14/5 * 4/7 : 2/5 = (14 * 4 * 5)/(5 * 7 * 2) = 4
ответ (выбери один вариант ответа и вычисли результат):
высказывание является истинным, так как 14/5⋅4/7:2/5= 4, а 4∈N (число 4 принадлежит множеству натуральных чисел N).
ответ: 14649
Объяснение:
Попробуем вывести формулу, которая вычисляет сумму:
X(n) = S(0) + S(1) +S(2)+...+S(10^n-1) - сумма всех цифр в числах до последнего n- значного числа.
Определим количество цифр 1-9, что попадутся в числах от 1 до 10^n -1.
Для удобства будем вести запись таких чисел с нулями в начале:
000...0, 000...1, 000..2,..., 000...10,..., 999...9
Число цифр в каждом числе равно n, то есть общее количество цифр равно: n*10^n, но поскольку ясно, что при такой форме записи чисел количества цифр 0-9 будут одинаковыми, то количество цифр 0-9 равно:
n*10^n/10 = n*10^(n-1)
Иначе говоря, любая из цифр 1-9 будет встречаться ровно n*10^(n-1) раз в числах от 1 до 10^n-1 (при стандартной записи чисел)
Сумма всех 10 цифр равна: 0+1+2+3+...+9 = 9*10/2 = 45
Тогда с учетом повторяемости каждой цифры имеем:
X(n) = 45n*10^(n-1)
Откуда:
S(1000) + S(1001) + ... + S(1999) = 1*1000 + S(0) + S(1) + S(2) +...+S(999) =
= 1000 + X(3) = 1000 + 45 * 300 = 1000 + 13500 = 14500
S(2000) + S(2001) +...+S(2021) = 2 * 22 + S(0) + S(1) + S(2) +...+S(19) + (S(20) +S(21) ) =2*22 + (S(0) + S(1)+...+S(9) ) + (S(10) + S(11) +...S(19) ) + 5 =
= 2*22 + 2*45 + 10*1 + 5 = 44 + 90 + 15 = 149
Тогда:
S(1000) + S(1001) + ... + S(2021) = 14500 + 149 = 14649
В решении.
Объяснение:
1. Используя обозначения N ; Z ; Q и знаки ∈ ; ∉ , запиши следующее утверждение:
−13 — рациональное число.
ответ : -13∈Q.
(-13 принадлежит множеству рациональных чисел Q).
2. Дан интервал (−8; 8) .
Укажи:
а) числовое множество, содержащееся в этом интервале:
[−6;7]
[8;10]
[−8;6)
б) числовое множество, не содержащееся в этом интервале:
(0;1)
[8;10]
[−6;7]
в) целое число, принадлежащее данному интервалу и отстоящее на одинаковое расстояние от его концов (запиши число): 0. (0 относится к множеству целых чисел Z).
3. Укажи, является ли следующее высказывание истинным:
14/5⋅4/7:2/5∈N.
14/5 * 4/7 : 2/5 = (14 * 4 * 5)/(5 * 7 * 2) = 4
ответ (выбери один вариант ответа и вычисли результат):
высказывание является истинным, так как 14/5⋅4/7:2/5= 4, а 4∈N (число 4 принадлежит множеству натуральных чисел N).