Найти: вторую высоту h₂, соответствующей второй стороне.
Решение.
Воспользуемся формулой площади параллелограмма: S = a·h, то есть площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
Возможны 2-случая.
1-случай (см. рисунок-1): S = AD·h₁ = 12·4 (см²) = 48 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
S = CD·h₂ = 48 (см²)
Отсюда:
9 см · h₂ = 48 (см²)
h₂ = 48 : 9 см = 16/3 см = 5 1/3 см.
ответ: h₂ = 16/3 см = 5 1/3 см.
2-случай (см. рисунок-2): S = CD·h₁ = 9·4 (см²) = 36 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
h₂ = 16/3 см или h₂ = 3 см.
Объяснение:
Дано:
Параллелограмм ABCD
AB = CD = 9 см
BC = AD = 12 см
h₁ = 4 см - высота, соответствующая одной стороне
Найти: вторую высоту h₂, соответствующей второй стороне.
Решение.
Воспользуемся формулой площади параллелограмма: S = a·h, то есть площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
Возможны 2-случая.
1-случай (см. рисунок-1): S = AD·h₁ = 12·4 (см²) = 48 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
S = CD·h₂ = 48 (см²)
Отсюда:
9 см · h₂ = 48 (см²)
h₂ = 48 : 9 см = 16/3 см = 5 1/3 см.
ответ: h₂ = 16/3 см = 5 1/3 см.
2-случай (см. рисунок-2): S = CD·h₁ = 9·4 (см²) = 36 (см²).
Для нахождения вторую высоту h₂, соответствующей второй стороне опять воспользуемся формулой площади параллелограмма:
S = AD·h₂ = 36 (см²)
Отсюда:
12 см · h₂ = 36 (см²)
h₂ = 36 : 12 см = 3 см
ответ: h₂ = 3 см.
х² - 2х + 1 - х² + 4 = х - 4
-2х -х = -4 - 4 - 1
-3х = -9
х = -9 / -3 = 3.
2) 5/x-x/3=0,2 0,2 = 2/10 = 1/5
Приводим к общему знаменателю 15х:
5*15-х*5х=3х
Получаем квадратное уравнение: 5х² + 3х - 75 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=3^2-4*5*(-75)=9-4*5*(-75)=9-20*(-75)=9-(-20*75)=9-(-1500)=9+1500=1509;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√1509-3)/(2*5)=(√1509-3)/10=√1509/10-3/10=√1509/10-0.3≈3.58458491991101;
x_2=(-√1509-3)/(2*5)=(-√1509-3)/10=-√1509/10-3/10=-√1509/10-0.3≈-4.18458491991101.
3) (X - 5)^2=(5 - x)^2
x² - 10x + 25 = 25 - 10x + x² - это тождество при любом х.
4) (X-2)^2-(x-1)*(x+)=x-5 - тут пропущена цифра.
5) X/7x/5=0,2 - тут знак пропущен
6) (X-2)^2=(3-x)^2
х² - 4х + 4 = 9 - 6х + х²
-4х + 6х = 9 - 4
2х = 5
х = 5 / 2 = 2,5.