Найдите: a) область определения функции, заданной формулой: 1) у = 3х + 1; 2) у = х3х-9 . б) область значений функции у = 3х-52 , на отрезке - 5≤ х ≤ 3
Присмотревшись к системе внимательно, замечаем, что это - система линейных уравнений, поскольку переменные x и y входят в неё в первых степенях.
Следовательно, решаем её как и любую линейную систему: подстановкой.
Из первого уравнения выражаем y и подставляем во второе:
Подставляем во второе:
Здесь я выделил коэффициент при x, зависящий от параметра, а, кроме того, кубический многочлен от параметра разложил на множители для большего удобства.
Теперь рассматриваем уравнение как линейное(с переменной x).
Очевидно, для любого линейного уравнения возможны следующие три случая:
а)Уравнение имеет ровно одно решение;
б)Уравнение имеет бесконечное множество решений;
в)Уравнение вообще не имеет решений.
Для начала стоит рассмотреть частные случаи.
а)Пусть . Тогда после подстановки получаем уравнение
, которое представляет из себя верное равенство(при умножении на 0 всегда получаем 0), а потому верно для любого x.
б)Пусть . Аналогичная ситуация имеет место. Уравнение вновь имеет бесконечно много решений, следовательно, и вся система(поскольку каждому x соответствует ровно один y, то бесконечному количеству значений x соответствует бесконечное количество значений y).
в)Пусть теперь .
Тогда сокращаем обе части уравнения на общий множитель:
То есть, для всех таких значений параметра а всегда имеет ровно 1 решение линейного уравнения(равное a-1). Тогда сразу из другого уравнения находим y:
таким образом, ответ можно записать так:
ответ: если , система имеет бесконечно много решений;
Lg означает десятичный логарифм —логарифм по основанию 10.Т.е lgb=log(10)b,пример lg100=log(10)100=2. lg (x^2-8)=lg (2-9x) В данном уравнении основания у тебя равны =>x^2-8=2-9x x^2+9x-10=0 x1=(-10),x2=1. ОДЗ: x^2-8>0 и 2-9x>0 Корень x2 не подходит=> ответ:x=(-10) При решении уравнений,а также неравенств тебе следует не забывать ОДЗ для логарифма,т.е,если log(a)b=c,то основание а>0 и а не равно 1,b>0.Типов заданий с логарифмами великое множество и к каждому случаю нужно индивидуальное решение)Кстати,есть еще lnb=log(e)b,где е-экспонента~2,72
Присмотревшись к системе внимательно, замечаем, что это - система линейных уравнений, поскольку переменные x и y входят в неё в первых степенях.
Следовательно, решаем её как и любую линейную систему: подстановкой.
Из первого уравнения выражаем y и подставляем во второе:
Подставляем во второе:
Здесь я выделил коэффициент при x, зависящий от параметра, а, кроме того, кубический многочлен от параметра разложил на множители для большего удобства.
Теперь рассматриваем уравнение как линейное(с переменной x).
Очевидно, для любого линейного уравнения возможны следующие три случая:
а)Уравнение имеет ровно одно решение;
б)Уравнение имеет бесконечное множество решений;
в)Уравнение вообще не имеет решений.
Для начала стоит рассмотреть частные случаи.
а)Пусть . Тогда после подстановки получаем уравнение
, которое представляет из себя верное равенство(при умножении на 0 всегда получаем 0), а потому верно для любого x.
б)Пусть . Аналогичная ситуация имеет место. Уравнение вновь имеет бесконечно много решений, следовательно, и вся система(поскольку каждому x соответствует ровно один y, то бесконечному количеству значений x соответствует бесконечное количество значений y).
в)Пусть теперь .
Тогда сокращаем обе части уравнения на общий множитель:
То есть, для всех таких значений параметра а всегда имеет ровно 1 решение линейного уравнения(равное a-1). Тогда сразу из другого уравнения находим y:
таким образом, ответ можно записать так:
ответ: если , система имеет бесконечно много решений;
если , то система имеет единственное решение
Объяснение:
lg (x^2-8)=lg (2-9x) В данном уравнении основания у тебя равны =>x^2-8=2-9x
x^2+9x-10=0
x1=(-10),x2=1.
ОДЗ: x^2-8>0 и 2-9x>0
Корень x2 не подходит=>
ответ:x=(-10)
При решении уравнений,а также неравенств тебе следует не забывать ОДЗ для логарифма,т.е,если log(a)b=c,то основание а>0 и а не равно 1,b>0.Типов заданий с логарифмами великое множество и к каждому случаю нужно индивидуальное решение)Кстати,есть еще lnb=log(e)b,где е-экспонента~2,72