экстремумы (sin a - cos a) найдем, приравняв к нулю производную:
cos a + sin a = 0
sin a = -cos a - решение в точках 3pi/4 + n*pi, n принадлежит Z
в точках 3pi/4 + 2n*pi, n принадлежит Z, sin a = (корень из 2)/2, cos a = -(корень из 2)/2, значит (корень из 2)/2 * sin a - (корень из 2)/2 * cos a = 2/4 - (-2/4) = 1 - максимум исходной функции.
в точках -pi/4 + 2n*pi, n принадлежит Z, sin a = -(корень из 2)/2, cos a = (корень из 2)/2, значит (корень из 2)/2 * sin a - (корень из 2)/2 * cos a = - 2/4 - 2/4 = -1 - минимум исходной функции.
Из вышесказанного можно сделать вывод, что исходное выражение будет лежать в данном интервале при любом значении альфа.
экстремумы (sin a - cos a) найдем, приравняв к нулю производную:
cos a + sin a = 0
sin a = -cos a - решение в точках 3pi/4 + n*pi, n принадлежит Z
в точках 3pi/4 + 2n*pi, n принадлежит Z, sin a = (корень из 2)/2, cos a = -(корень из 2)/2, значит (корень из 2)/2 * sin a - (корень из 2)/2 * cos a = 2/4 - (-2/4) = 1 - максимум исходной функции.
в точках -pi/4 + 2n*pi, n принадлежит Z, sin a = -(корень из 2)/2, cos a = (корень из 2)/2, значит (корень из 2)/2 * sin a - (корень из 2)/2 * cos a = - 2/4 - 2/4 = -1 - минимум исходной функции.
Из вышесказанного можно сделать вывод, что исходное выражение будет лежать в данном интервале при любом значении альфа.
Второй ехал со скоростью x, значит первый: x + 4
Всю дорогу первый за 96/(x+4) часа, а второй за 96/x часа
Значит:
4 + 96/(x+4) = 96/x
Приведем к общему знаменателю:
(4x + 16 + 96)/(x+4) = 96/x
Вынесем из скобок 4
4(x+4+24)/(x+4) = 4*24/x
Сократим 4
(x+28)/(x+4) = 24/x
Перемножим крест-накрест
(x+28)x = 24(x+4)
x^2 + 28x = 24x + 96
x^2 + 4x - 96 = 0
D = 4 + 96 = 100
x = -2 +-10 = -12 или 8
-12 не удовлетворяет, так как скорость не может быть минусовой.
Значит скорость второго: 8 км/ч, он же и пришел к финишу на 4 часа позже первого, значит:
ответ: 8км/ч