Объяснение:
f(x) = x² +16/x
необходимое условие экстремума функции
f'(x₀) = 0 - это необходимое условие экстремума функции в т х₀
достаточное условие
если в т х₀
f'(x₀) = 0 и f''(x₀) > 0 , то точка x₀ - точкой локального (глобального) минимума.
если в т x₀
f'(x₀) = 0 и f''(x₀) < 0 , то точка x₀ - локальный (глобальный) максимум.
теперь найдем первую производную
f'(x) = 2x -16/x²
2x -16/x² = 0; здесь одно решение х₁ = 2 - это точка экстремума
посмотрим, какой это экстремум
для этого возьмем вторую производную
f''(x) = 2 + 32/x³
f''(2) = 6 > 0, т.е. точка x₀ = 2 точка минимума функции.
значение функции в т х₀
f(2) = 12
1)(2x - 3)(x+1)>x(в квадрате) +17=
2x(в кавадрате) +2х-3х-3>х(в квадрате) +17
2x(в кавадрате) +2х-3х-3-х(в квадрате) -17>0
х(в квадрате) - х - 20 >0
х(в квадрате) -х - 20=0
D=1-4*(-20)=81
х1= 1+9/2= 5
х2= 1-9/2= -4
(х-5)(х+4)
+ - +
-4 5
ответ: ( - ∞ ;-4)U(5;+ ∞)
2)11-x >= (x+1)в квадрате=
11-х >= х(в квадрате) + 2х+1
11-х - х(в квадрате)-2х-1 >=0
-х(в квадрате) - 3х+10>=0
-х(в квадрате) - 3х+10=0
D=9-4*(-1)*10=49
х1=3-7/-2=2
х2=3+7/-2=-5
-5 2
ответ: ( - ∞;-5 ] U [ 2 ; + ∞)
3)-3x <+9x
-3х - 9х < 0
-12х < 0
х > 0
Объяснение:
f(x) = x² +16/x
необходимое условие экстремума функции
f'(x₀) = 0 - это необходимое условие экстремума функции в т х₀
достаточное условие
если в т х₀
f'(x₀) = 0 и f''(x₀) > 0 , то точка x₀ - точкой локального (глобального) минимума.
если в т x₀
f'(x₀) = 0 и f''(x₀) < 0 , то точка x₀ - локальный (глобальный) максимум.
теперь найдем первую производную
f'(x) = 2x -16/x²
2x -16/x² = 0; здесь одно решение х₁ = 2 - это точка экстремума
посмотрим, какой это экстремум
для этого возьмем вторую производную
f''(x) = 2 + 32/x³
f''(2) = 6 > 0, т.е. точка x₀ = 2 точка минимума функции.
значение функции в т х₀
f(2) = 12
1)(2x - 3)(x+1)>x(в квадрате) +17=
2x(в кавадрате) +2х-3х-3>х(в квадрате) +17
2x(в кавадрате) +2х-3х-3-х(в квадрате) -17>0
х(в квадрате) - х - 20 >0
х(в квадрате) -х - 20=0
D=1-4*(-20)=81
х1= 1+9/2= 5
х2= 1-9/2= -4
(х-5)(х+4)
+ - +
-4 5
ответ: ( - ∞ ;-4)U(5;+ ∞)
2)11-x >= (x+1)в квадрате=
11-х >= х(в квадрате) + 2х+1
11-х - х(в квадрате)-2х-1 >=0
-х(в квадрате) - 3х+10>=0
-х(в квадрате) - 3х+10=0
D=9-4*(-1)*10=49
х1=3-7/-2=2
х2=3+7/-2=-5
+ - +
-5 2
ответ: ( - ∞;-5 ] U [ 2 ; + ∞)
3)-3x <+9x
-3х - 9х < 0
-12х < 0
х > 0