Составьте уравнение прямой, проходящей через заданные точки: М (-3;-1) N(2;5)
уравнение прямой y =kx +b ; * * * - 3 = x₁ ≠ x₂ =2 * * * прямая проходить через точки М(-3;-1) значит -1 = k*(-3) + b ⇒ y+1 =k(x + 3) это уравнение прямой, проходящей через точку М (-3;-1). прямая y+1 =k(x + 3) проходить еще и через точки N(2;5), поэтому : 5 +1 = k(2 +3)⇒ k =6/5 * * * k =( y₂ - y₁) /(x₂ - x₁) * * * y+1 = (6/5) * (x +3) ⇔y = (6/5) *x +13/5. || y = 1,2x +2,6 или иначе 6x -5y +13=0.||
ответ: 6x -5y +13=0 .
* * * В общем случае уравнение прямой, проходящей через заданные точки M( x₁; y₁) и N( x₂; y₂) , x₁≠ x₂ имеет вид : y - y₁ =(y₂ -y₁) /(x₂ -x₁) *(x -x₁), где (y₂ -y₁) /(x₂ -x₁)=k→угловой коэффициент --- если x₁= x₂ ,то уравнение прямой будет задается формулой x =x₁ (прямая параллельная оси ординат)
1) Новый общий знаменатель для двух дробей это y в максимальной присутствующей степени, т.е. y^{4}. Тогда дополнительным множителем к первой дроби будет единица, а ко второй дроби y^{3}. Получается \frac{2x}{y^{4}} и \frac{3x^{3}}{y^{4}}. 2) Дополнительный множитель к первой дроби будет y, а ко второй a^{5}. Получается \frac{2by}{ya^{5}} и \frac{6a^{5}}{ya^{5}}. 3) Новый общий знаменатель для двух дробей будет это 6x^{2}y^{2}. Тогда дополнительный множитель к первой дроби будет 2x, а ко второй y. Получается \frac{7y}{6x^{2}y^{2}} и \frac{4x}{6x^{2}y^{2}}. 4) Новым общим знаменателем для двух дробей будет 7x(x+5). Тогда дополнительным множителем к первой дроби будет 7x, а ко второй (x+5). Получается \frac{28x}{7x(x+5)} и \frac{3x+15}{7x(x+5)}. 5) Т.к. новый общий знаменатель должен включать в себя все множители из обоих дробей, то он будет равен (3x-3y)(4x+4y). Из каждой скобки можно вынести общий множитель, перемножить их, а скобки свернуть по формуле "разность квадратов": (3x-3y)(4x+4y)=3(x-y)4(x+y)=12(x^{2}-y^{2}). ответ и будет являться новым общим знаменателем. Дополнительный множитель к первой дроби будет (3x-3y), а ко второй (4x+4y). Получается \frac{8x^{2}+8xy}{12(x^{2}-y^{2})} и \frac{9xy-9y^{2}}{12(x^{2}-y^{2})}. 6) Из знаменателя первой дроби вынесем общий множитель: 2a+2=2(a+1). Таким образом новый общий знаменатель будет равен 2(a+1). Дополнительный множитель к первой дроби будет 1, а ко второй 2. Получается \frac{a}{2(a+1)} и \frac{6}{2(a+1)}.
уравнение прямой y =kx +b ; * * * - 3 = x₁ ≠ x₂ =2 * * *
прямая проходить через точки М(-3;-1) значит
-1 = k*(-3) + b ⇒
y+1 =k(x + 3) это уравнение прямой, проходящей через точку М (-3;-1).
прямая y+1 =k(x + 3) проходить еще и через точки N(2;5), поэтому :
5 +1 = k(2 +3)⇒ k =6/5 * * * k =( y₂ - y₁) /(x₂ - x₁) * * *
y+1 = (6/5) * (x +3) ⇔y = (6/5) *x +13/5.
|| y = 1,2x +2,6 или иначе 6x -5y +13=0.||
ответ: 6x -5y +13=0 .
* * * В общем случае уравнение прямой, проходящей через заданные
точки M( x₁; y₁) и N( x₂; y₂) , x₁≠ x₂ имеет вид :
y - y₁ =(y₂ -y₁) /(x₂ -x₁) *(x -x₁), где (y₂ -y₁) /(x₂ -x₁)=k→угловой коэффициент
---
если x₁= x₂ ,то уравнение прямой будет задается формулой x =x₁
(прямая параллельная оси ординат)
Получается \frac{2x}{y^{4}} и \frac{3x^{3}}{y^{4}}.
2) Дополнительный множитель к первой дроби будет y, а ко второй a^{5}. Получается \frac{2by}{ya^{5}} и \frac{6a^{5}}{ya^{5}}.
3) Новый общий знаменатель для двух дробей будет это 6x^{2}y^{2}.
Тогда дополнительный множитель к первой дроби будет 2x, а ко второй y. Получается \frac{7y}{6x^{2}y^{2}} и \frac{4x}{6x^{2}y^{2}}.
4) Новым общим знаменателем для двух дробей будет 7x(x+5). Тогда дополнительным множителем к первой дроби будет 7x, а ко второй (x+5). Получается \frac{28x}{7x(x+5)} и \frac{3x+15}{7x(x+5)}.
5) Т.к. новый общий знаменатель должен включать в себя все множители из обоих дробей, то он будет равен (3x-3y)(4x+4y). Из каждой скобки можно вынести общий множитель, перемножить их, а скобки свернуть по формуле "разность квадратов":
(3x-3y)(4x+4y)=3(x-y)4(x+y)=12(x^{2}-y^{2}). ответ и будет являться новым общим знаменателем.
Дополнительный множитель к первой дроби будет (3x-3y), а ко второй (4x+4y). Получается \frac{8x^{2}+8xy}{12(x^{2}-y^{2})} и \frac{9xy-9y^{2}}{12(x^{2}-y^{2})}.
6) Из знаменателя первой дроби вынесем общий множитель:
2a+2=2(a+1). Таким образом новый общий знаменатель будет равен 2(a+1). Дополнительный множитель к первой дроби будет 1, а ко второй 2. Получается \frac{a}{2(a+1)} и \frac{6}{2(a+1)}.