В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Drftdsrx
Drftdsrx
05.06.2023 15:29 •  Алгебра

Найдите |b| если |a|=6 |a+b|=11 и |a-b|=7 все векторы a и b

Показать ответ
Ответ:
LinaKosarchuk
LinaKosarchuk
08.10.2020 21:10
Попробуйте такое решение:1. Пусть координаты вектора "а" будут х_а и у_а, а координаты вектора 'b' - х_b и y_b соответственно.2. Используя координаты, можно составить три уравнения:- для длины вектора |a|: (х_а)²+(у_а)²=36 (по условию длина его 6);- для длины вектора |a+b|: (х_а+х_b)²+(y_a+y_b)²=121 (по условию его длина 11);- для длины вектора |a-b|: (x_a-x_b)²+(y_a-y_b)²=49 (по условию его длина равна 7).3. По трём уравнениям можно составить систему и решить её относительно [(x_b)²+(y_b)²]. Расчёты системы приведены во вложении (по возможности перепроверьте).ответ: 7.

Найдите |b| если |a|=6 |a+b|=11 и |a-b|=7 все векторы a и b
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота