а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2}) Вероятность равна: г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4}) Вероятность равна: д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5}) Вероятность равна: Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
Площадь-это произведение сторон прямоугольника, периметр-это сумма сторон прямоугольника. В связи с этим и предлагаемыми данными можно составить 2 уравнения, соответствующие площади газона: х*у=56 и его периметру: х+х+у+у=30 Где х - ширина газона, а у - длина газона Мы получили систему из 2х уравнений: х*у=56 х+х+у+у=30
Немного упросим её, приведя подобные слагаемые: х*у=56 2х+2у=30 Выразим из второго уравнения, к примеру, х и подставим полученное выражение в первое уравнение системы: 2х=30-2у Данное уравнение можно разделить на 2, от этого результат не изменится, получим: х=15-у
Подставляем в первое уравнение системы: (15-у)*у=56 Раскрываем скобки: 15у-у²=56 Получаем квадратное уравнение: -у²+15у-56=0 Или: у²-15у+56=0 Решаем его относительно у: Накладываем условие, что у>0 (так же, как и х), потому что длина не может быть отрицательной: Д=(-15²)-4*1*56=225-224=1 у1=(15+1):2=16:2=8 м - длина газона 1 у2=(15-1):2=14:2=7м - длина газона 2
Теперь найдём соответствующую каждой длине газона ширину, вспомнив выраженноую нами переменную х: х=15-у х1=15-8=7 м - ширина газона 1 х2=15-7=8 м - ширина газона 2
а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому:
б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна:
в) Сумма равна 3, это ({0};{3}) или ({1};{2})
Вероятность равна:
г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4})
Вероятность равна:
д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5})
Вероятность равна:
Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
х*у=56
и его периметру:
х+х+у+у=30
Где х - ширина газона, а у - длина газона
Мы получили систему из 2х уравнений:
х*у=56
х+х+у+у=30
Немного упросим её, приведя подобные слагаемые:
х*у=56
2х+2у=30
Выразим из второго уравнения, к примеру, х и подставим полученное выражение в первое уравнение системы:
2х=30-2у
Данное уравнение можно разделить на 2, от этого результат не изменится, получим:
х=15-у
Подставляем в первое уравнение системы:
(15-у)*у=56
Раскрываем скобки:
15у-у²=56
Получаем квадратное уравнение:
-у²+15у-56=0
Или:
у²-15у+56=0
Решаем его относительно у:
Накладываем условие, что у>0 (так же, как и х), потому что длина не может быть отрицательной:
Д=(-15²)-4*1*56=225-224=1
у1=(15+1):2=16:2=8 м - длина газона 1
у2=(15-1):2=14:2=7м - длина газона 2
Теперь найдём соответствующую каждой длине газона ширину, вспомнив выраженноую нами переменную х:
х=15-у
х1=15-8=7 м - ширина газона 1
х2=15-7=8 м - ширина газона 2
В итоге бы получаем ответ: 7 м и 8 м.