Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).
ответ: решение невозможно, возможно, в задаче есть ошибка, но я написала решение и вы всегда можете заменить данные правильными
Объяснение: Так как получившиеся прямоугольники равны, они резали изначальные прямоугольники одна вдоль, а другая поперёк. Надеюсь, вы уже изучали х и у.
пусть длина изначального прямоугольника 2х, а ширина 2у
тогда если резать вдоль: периметр = 2*2у+ 2*2х\2 = 4у+2х
Если резать поперёк: периметр = 2*2х+ 2*2у\2 = 4х+ 2у
Напоминаю: длина всегда больше ширины, поэтому:
4у+2х=18
2у+ 4х = 39
собираем эти два уравнения в систему, домножаем первое на -1, а второе на 2:
9,90,99
Объяснение:
Сумма бесконечно убывающей геометрической прогрессии:
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).
ответ: решение невозможно, возможно, в задаче есть ошибка, но я написала решение и вы всегда можете заменить данные правильными
Объяснение: Так как получившиеся прямоугольники равны, они резали изначальные прямоугольники одна вдоль, а другая поперёк. Надеюсь, вы уже изучали х и у.
пусть длина изначального прямоугольника 2х, а ширина 2у
тогда если резать вдоль: периметр = 2*2у+ 2*2х\2 = 4у+2х
Если резать поперёк: периметр = 2*2х+ 2*2у\2 = 4х+ 2у
Напоминаю: длина всегда больше ширины, поэтому:
4у+2х=18
2у+ 4х = 39
собираем эти два уравнения в систему, домножаем первое на -1, а второе на 2:
-4у-2х=-18
4у+8х=78
складываем:
6х=60
х=10
НО!
4у+20=18
у=-0,5, а это невозможно