Функция убывает при x ∈ [- 2; 0] ; [2; + ∞).
Функция возрастает при x ∈ (- ∞; - 2] ; [0; 2].
Объяснение:
y = - x⁴ + 8x² - 16
y' = - 4x³ + 16x
y' = 0
- 4x³ + 16x = 0
4x(x² - 4) = 0
x = 0, x² - 4 = 0
(x - 2)(x + 2) = 0
x = 2 x = - 2
Отметим точки на координатной прямой и определим знаки производной на получившихся интервалах (знаки чередуются, справа минус), см. рисунок.
Если на промежутке производная положительна, то функция возрастает, если отрицательна - убывает.
Функция убывает при x ∈ [- 2; 0] ; [2; + ∞).
Функция возрастает при x ∈ (- ∞; - 2] ; [0; 2].
Объяснение:
y = - x⁴ + 8x² - 16
y' = - 4x³ + 16x
y' = 0
- 4x³ + 16x = 0
4x(x² - 4) = 0
x = 0, x² - 4 = 0
(x - 2)(x + 2) = 0
x = 2 x = - 2
Отметим точки на координатной прямой и определим знаки производной на получившихся интервалах (знаки чередуются, справа минус), см. рисунок.
Если на промежутке производная положительна, то функция возрастает, если отрицательна - убывает.
Функция убывает при x ∈ [- 2; 0] ; [2; + ∞).
Функция возрастает при x ∈ (- ∞; - 2] ; [0; 2].
pi/3 + 5x =pi/4 + pi*k;
5x = pi/4 - pi/3 +pi*k;
5x = 3 pi/12 - 4pi/12 + pi*k;
5x = - pi/12 + pi*k;
x = - pi/60 + pi*k / 5.
2. sin^2 x + cos^2(2x) = 1;
cos^2(2x) = 1 - sin^2 x;
cos^2(2x) = cos^2 x;
(cos^2 x - sin^2 x)^2 =cos^2 x ;
cos^2 x - 2 sin^2 x* cos^2 x+ sin^2 x = cos^x ;
sin^2 x - 2 sinx^ *cos^ x = 0;
sin^2x (1 - 2 cos^2 x) =0;
1) sin^2 x =0; ⇒sin x =0; x = pi*k; k-Z;
2) 1 - 2 cos^2 x =0;
cos^2 x = 1/2;
cos x = sgrt2/2;⇒ x = + - pi/4 + 2 pi*k;
cos x = - sgrt2/2;⇒ x = + - 3 pi/4 + 2 pi*k.
Объединим эти 2 ответа, так как видно, что угол повторяется через пи/2.
Получим x = pi/4 + pi*k /2.
ответ :
x = pi*k;
x = pi/4 + pik/2; k-Z